• Title/Summary/Keyword: A Heavy Metal

Search Result 2,535, Processing Time 0.024 seconds

A Studs on Farmers Syndrome and Its Risk Factors of Vinylhouse Workers and Evaluation of Risk Factors of Vinylhouse Works (일부 농촌지역 비닐하우스 농사자들의 작업환경 및 농부증 실태와 관련요인평가)

  • Lee, Jung-Jeung
    • Journal of agricultural medicine and community health
    • /
    • v.29 no.1
    • /
    • pp.101-119
    • /
    • 2004
  • Objectives: In order to estimate risk factors affecting the health of vinylhouse workers and harmful environments in vinylhouse working. Methods: The investigator performed questionnaires and laboratory examinations on 102 vinylhouse workers and 69 farmers in 7 myoens (Korean subcounties). one eup (a Korean town), Goryeong-gun, Gyeongsangbuk-do between April 8 and 18, 2004 (for 11 days), and measured the heavy metal in the air and the soil, temperature, humidity, air current, harmful gases in vinylhouses. Results: Even in cloudy days, the temperature in vinylhouses in daylight was $33.4^{\circ}$ and the temperature difference between inside and outside vinylhouses was around $16^{\circ}$. Oxygen concentration was similar inside and outside vinylhouses, while carbon dioxide concentration was lower inside than outside vinylhouses. Carbon monoxide was not detected. In the air inside vinylhouses, cadmium was not detected. Lean concentration in the soil was lower inside vinylhouses than outside vinylhouses at surface, while cadmium concentration was similar inside and outside vinylhouses in the soil except some areas. Out of male vinylhouse workers. 16.4---- were positive farmer's syndrome and 49.2---- were suspicious, while out of females, 41.5---- were positive and 46.3---- were suspicious. Out of male farmers, 30.4---- were positive farmer's syndrome, while out of female farmers, 60.0---- were positive and 28.3---- were suspicious. There was no difference between vinylhouse workers and farmers in the distribution of hypertension and abnormal liver function, while diabetes mellitus was more common in farmers than in vinylhouse workers. Vinylhouse working, sex, and hours of farming per day were selected as significant variables affecting farmer's syndrome in this study, and the rate of positive farmer's syndrome was rather lower in vinylhouse workers than in farmers. Females were higher than males in the rate, and those who farmed at least 10 hours per day were higher in the rate than those who farmed less than 10 hours per day. Out of the vinylhouse workers, no differences were found between the distribution of farmer's syndrome and farming-related variables such as the total period of farming, the size of farm land, the mean farming hours per day, the number of family members who farm together, the frequency of scattering agricultural chemicals. In addition, there were no differences between the distribution and the wearing masks and protectors and personal sanitation among those who scattered agricultural chemicals by themselves. There were no differences found in blood lean concentration, urinary cadmium concentration, serum cholinesterase, and hemoglobin according to the distribution of farmer's syndrome. In the vinylhouse workers, females were higher than males in the rate of farmer's syndrome, and those who farmed at least 10 hours per day were higher in the rate than those who farmed less than 10 hours per day. Meanwhile, the rate was lower in those who slept at least 8 hours a day than in those who slept less than 8 hours. Conclusions: In conclusion, the physical environments inside vinylhouses were harmful, but no significant difference was found in harmfulness of the chemical environments. The chronic diseases such as farmer's syndrome. hypertension, diabetes, and dyshepatia were not common in the vinylhouse workers than in the farmers. Meanwhile, farmer's syndrome was more common in the vinylhouse workers who worked longer and slept less.

  • PDF

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF

Decentralized Composting of Garbage in a Small Composter for Dwelling House;III. Laboratory Composting of the Household Garbase in a Small Bin with Double Layer Walls (가정용 소형 퇴비화용기에 의한 부엌쓰레기의 분산식 퇴비화;III. 실험실조건에서 이중벽 소형 용기에 의한 퇴비화 연구)

  • Seo, Jeoung-Yoon;Joo, Woo-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.232-245
    • /
    • 1995
  • The garbage from the dwelling house was composted in two kinds of small composter in the laboratory, and the possibility of garbage composting was examined. The composters were general small. One (type 3) was constructed with the double layer walls and the other (type 4) was the same as the first except for being insulated. Because it was found that type 3 was not available for composting under our meteorological conditions through the winter experiment, only type 4 was tested in spring and summer. The experiment was performed for 8 weeks in each season. The seasonal variation of several components in the compost was evaluated and discussed. The results summarized below were those obtained at the end of the experiment, if the time was not specified. 1) The maximum temperature was $43^{\circ}C$ in winter, $55^{\circ}C$ in spring and $56^{\circ}C$ in summer. 2) The mass was reduced to an average of 63% and the volume reduction was an average of 78%. 3) The density was estimated as 1.5 kg/l in winter and 0.8 kg/l in spring and summer. 4) The water content was not much changed during the composting periods. It was 79.3% in winter, 75.0% in spring and 70.0% in summer. 5) After pH value increased during the first week, it decreased until the second week and increased again continuously thereafter. It reached pH 6.19 in winter, pH 7.59 in spring and pH 8.69 in summer. 6) The faster the organic matter was decomposed, the greater the ash content increased. The contents of cellulose and lignin increased, but that of hemicellulose decreased during the composting period. 7) Nitrogen contents were in the range of 3.3-6.8% and especially high in summer. After ammonium contents increased at the early stage of the composting period, they decreased. The maximum ammonium-nitrogen content was 2,404mg/kg after 8 weeks in winter, 12,400mg/kg after 3 weeks in spring and 20,718mg/kg after 3 weeks in summer. C/N-ratios decreased with the lapse of composting time, but they were not much changed. Nitrification occurred actively in summer. 8) The contents of volatile and higher fatty acids increased at the early stage of composting and reduced after that. The maximum content of total fatty acid was 9.7% after 6 weeks in winter, 14.8% after 6 weeks in spring and 15.8% after 2 weeks in summer. 9) The contents of inorganic components were not accumulated as composting proceeded. They were in the range of 0.9-4.4% $P_2O_5$, 1.6-2.4% $K_2O$, 2.2-5.4% CaO and 0.30-0.61% MgO. 10) CN and heavy metal contents did not show any tendency. They were in the range of 0.21-14.55mg/kg CN, 11-166mg/kg Zn, 5-65mg/kg Cu, 0.5-10.8mg/kg Cd, 6- 35mg/kg Pb, ND-33 mg/kg Cr and ND-302.04 g/kg Hg.

  • PDF

Assessment of Organic Compound and Bioassay in Soil Using Pharmaceutical Byproduct and Cosmetic Industry Wastewater Sludge as Raw Materials of Compost (제약업종 부산물 및 화장품 제조업 폐수처리오니 처리토양에 대한 유기화합물 및 Bioassay 분석 평가)

  • Lim, Dong-Kyu;Lee, Sang-Beom;Lee, Seung-Hwan;Nam, Jae-Jak;Na, Young-Eun;Kwon, Jang-Sik;Kwon, Soon-Ik;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.203-210
    • /
    • 2004
  • This study was conducted to assessment organic compound and bioassay (density of inhabited animal, fluctuation of predominant fungi, and survival ratio of earthworm) for finding damage on red pepper by heavily amount application of sludges in soil, which was treated with 3 pharmaceutical byproducts and a cosmetic industry wastewater sludge as raw materials of compost, and for establishing estimation method. HEM contents in the soil treated with pharmaceutical byproducts sludge2 (PS2) and cosmetic sludge (CS) were 0.51, 1.10 mg/kg respectively. PAHs content of PS2 treatment in the soil was 3406.8 ug/kg on July 8. In abundance of soil faunas, the pharmaceutical byproducts sludge2 treatment was the most highest. The next was decreased in the order of pig manure (PM) and the cosmetic sludge treatment. However the other pharmaceutical sludge treatments were remarkably reduced populations of soil inhabited animals. In upland soil treated with organic sludges, the numbers of bacteria and fungi of the pharmaceutical sludge treatment were 736, 909 cfu/g and those of the cosmetic sludge treatment were 440, 236 cfu/g, respectively. The pharmaceutical sludge treatments and the cosmetic sludge treatment in identification of predominant bacteria were not any tendency to compare with non fertilizer and pig manure treatments, but they had diverse bacteria than NPK treatment. In microcosm tests, the survival of the tiger earthworm in five soil samples was hardly affected against the soil of PSI (20%) after three months treated in the upland But after six months, survival of PS1 was 80%. At present, raw material of compost was authorized by contents of organic matter, heavy metal (8 elements), and product processing according to 'The specified gist on possible materials of using after analysis and investigation among raw materials of compost', however, for preparing to change regulation of raw material of compost and for considering to possibility of application, this study was conducted to investigate toxic organic compound and bioassay methods using inhabited animal, fungi, and earthworm without current regulation.

Field Survey on Pig Slurry Utilization for Crop Cultivation in the Agricultural Farm (양돈분뇨 액비를 이용한 경종농가의 작물재배 실태조사)

  • Choi, D.Y.;Noh, J.S.;Lee, S.C.;Kim, H.N.;Ahn, K.J.;Cho, I.K.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.3
    • /
    • pp.141-150
    • /
    • 2006
  • To optimise the efficient use of nutrients in pig slurry is to cultivate friendly environmental crops. This field survey is to investigate the actual conditions of pig slurry utilization for cultivation of crops in the agricultural farm, based on the survey for 407 selected farms in 9 provinces included 78 counties in Korea. The results obtained in this survey were summarized as follow ; The motive which came to use pig slurry in the agricultural farm were production of friendly environmental crops (29.7%), economy of chemical fertilizer (25.1%), spontaneously (19.2%), inducement of neighboring farmhouse (16.0%), increase of soil fertility (9.3%), and the others (0.7%), respectively. The proportions of pig slurry application land were 56.5% for.ice paddy, 22.6% for dry field, 13.3% for orchard, 4.4% for controlled agriculture and 3.2% for other, respectively. The number of times of pig slurry utilization per year were once (48.9%), twice (31.9%), thrice (14.0%), and the others (5.2%), respectively. The controversial points of pig slurry utilization were malodor (54.1%), insufficiency of spread equipment (22.1%), inconvenience (14.5%), over application (3.4%), over cost (2.9%), heavy metal (1.7%), sanitation (1.0%) and the other (0.2%), respectively. The results indicated that pig slurry could be used as fertilizer source of friendly environmental crops, but further studies are needed to determine the application method and value of the pig slurry for crop cultivation.

  • PDF