• Title/Summary/Keyword: A형화강암류

Search Result 4, Processing Time 0.018 seconds

Use of Magnesium Stable Isotope Signatures for the Petrogenetic Interpretation of Granitic Rocks (화강암류의 성인 해석에 대한 마그네슘 동위원소 자료의 활용)

  • Cheong, Chang-Sik;Ryu, Jong-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2014
  • With the advent of multi collector-inductively coupled plasma mass spectrometry, stable isotopic variations of non-traditional metal elements have provided important constraints on the sources of geologic materials. This review introduces the principles of magnesium isotopic fractionation and analytical methods. Recent case studies are also reviewed for the use of magnesium isotope signatures to decipher the source materials of I-, S-, and A-type granitoids in western North America, Australia, and China.

The Geochemical and Zircon Trace Element Characteristics of A-type Granitoids in Boziguoer, Baicheng County, Xinjiang (중국 신장 위그루자치구 바이청현 보즈구얼의 A형화강암류의 지화학 및 지르콘 미량원소특징에 대한 연구)

  • Yin, Jingwu;Liu, Chunhua;Park, Jung Hyun;Shao, Xingkun;Yang, Haitao;Xu, Haiming;Wang, Jun
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.179-198
    • /
    • 2013
  • The Boziguoer A-type granitoids in Baicheng County, Xinjiang, belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks. The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite, an aegirine or arfvedsonite alkali feldspar granite, and a biotite alkali feldspar syenite. The major rock-forming minerals are albite, K-feldspar, quartz, arfvedsonite, aegirine, and siderophyllite. The accessory minerals are mainly zircon, pyrochlore, thorite, fluorite, monazite, bastnaesite, xenotime, and astrophyllite. The chemical composition of the alkaline granitoids show that $SiO_2$ varies from 64.55% to 72.29% with a mean value of 67.32%, $Na_2O+K_2O$ is high (9.85~11.87%) with a mean of 11.14%, $K_2O$ is 2.39%~5.47% (mean = 4.73%), the $K_2O/Na_2O$ ratios are 0.31~0.96, $Al_2O_3$ ranges from 12.58% to 15.44%, and total $FeO^T$ is between 2.35% and 5.65%. CaO, MgO, MnO, and $TiO_2$ are low. The REE content is high and the total ${\sum}REE$ is $(263{\sim}1219){\times}10^{-6}$ (mean = $776{\times}10^{-6}$), showing LREE enrichment HREE depletion with strong negative Eu anomalies. In addition, the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type. The Zr content is $(113{\sim}1246){\times}10^{-6}$ (mean = $594{\times}10^{-6}$), Zr+Nb+Ce+Y is between $(478{\sim}2203){\times}10^{-6}$ with a mean of $1362{\times}10^{-6}$. Furthermore, the alkaline granitoids have high HFSE (Ga, Nb, Ta, Zr, and Hf) content and low LILE (Ba, K, and Sr) content. The Nb/Ta ratio varies from 7.23 to 32.59 (mean = 16.59) and the Zr/Hf ratio is 16.69~58.04 (mean = 36.80). The zircons are depleted in LREE and enriched in HREE. The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly. The Boziguoer A-type granitoids share similar features with A1-type granites. The average temperature of the granitic magma was estimated at $832{\sim}839^{\circ}C$. The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature, anhydrous, and low oxygen fugacity conditions.

Metamorphic Evolution of the central Ogcheon Metamorphic Belt in the Cheongju-Miwon area, Korea (청주-미원지역 중부 옥천변성대의 변성진화과정)

  • 오창환;권용완;김성원
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.106-124
    • /
    • 1999
  • In the Cheongju-Minwon area which occupies the middle part of the Ogcheon Metamorphic Belt, three metamorphic events(M1, M2, M3) had occurred. Intermediate P/T type M2 regional metamorphism formed prevailing mineral assemblages in the study area. Low PIT type M3 contact metamorphism occurred due to the intrusion of granites after M2 metamorphism. M1 metamorphism is recognized by inclusions within garnet. During M2 metamorphism, the metamorphic grade increased from the biotite zone in the southeastern part to the garnet zone in the northwestern part of the study area. This result is similar to the metamorphic evolution of the southwestern part of the Ogcheon Metamorphic Belt. Garnets in the garnet zone are classified into two types; Type A garnet has inclusions whose trail is connected to the foliation in the matrix and Type B garnet has inclusion rich core and inclusion poor rim. Type A garnet formed in the mica rich part with crenulation cleavage whereas Type B garnet formed in the quartz rich part with weak crenulation cleavage. In some outcrops, two types garnets are found together. Compared to the rim of Type A garnet, the rim of Type B garnet is lower in grossular and spessartine contents but higher in almandine and pyrope contents. In some Type B garnets, the inclusion poor part is rimmed by muddy colored or protuberant new overgrowth. In the inclusion poor part and new overgrowth, a rapid increase in grossular and decrease in spessartine is observed. However, the compositional patterns of Type A and B are similar; Ca increases and Mn decreases from core to rim. Two types garnets formed mainly due to the difference of bulk chemistry instead of metamorphic and deformational differences. The metamorphic P-T conditions estimated from Type A garnets are 595-690 OC15.7-8.8 kb, which indicates M2 metamorphism is intermediate P/T type metamorphism. On the other hand, a wide range of P-T conditions is calculated from Type B garnets. The P-T conditions from most Type B garnet rims are 617-690 OC16.2-8.9 kb which also indicates an intermediate P/T type metamorphism. However, at the rim part with flat end or weak overgrowth, grossular content is low and 573-624OC14.7-5.8 kb are estimated. The P-T conditions calculated from plagioclase and biotite inclusions in garnet are 460-500 0C/1.9-3.0 kb. The P-T conditions from rim part with weak overgrowth and inclusions within garnet, indicate that low P/T type M1 regional metamorphism might have occurred before intermediate P/T type M2 regional metamorphism. The P-T conditions estimated from samples which had undergone low PIT type M3 metamorphism strongly, are 547-610 0C/2.1-5.0 kb.

  • PDF

Geological Structure of Okcheon Metamorphic Zone in the Miwon-Boeun area, Korea (미원-보은지역에서 옥천변성대의 지질구조)

  • 강지훈;이철구
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.234-249
    • /
    • 2002
  • The Miwon-Boeun area in the central and northern part of Okcheon metamorphic zone, Korea, is composed of Okcheon Supergroup and Mesozoic Cheongju and Boeun granitoids which intruded it. The Okcheon Supergroup consists mainly of quartzite (Midongsan Formation), meta-calcareous rocks (Daehyangsan Formation, Hwajeonri Formation), meta-psammitic rocks (Unkyori Formation), meta-politic rocks (Munjuri Formation), meta-conglomeratic rocks (Hwanggangni Formation) in the study area, showing a zonal distribution of NE trend. Its' general trend is locally changed into NS to EW trend in and around high-angle fault of NS or NW trend. This study focused on deformation history of the Okcheon Supergroup, suggesting that the geological structure was formed at least by four phases of deformation. (1) The first phase of deformation occurred under ductile shear deformation of top-to-the southeast movement, forming sheath fold or A-type fold, asymmetric isoclinal fold, NW-SE trending stretching lineation. (2) The second phase of deformation took place under compression of NW-SE direction, forming subhorizontal, tight upright fold of M trend in the earlier phase, and formed semi-brittle thrust fault (Guryongsan Thrust Fault) of top-to-the southeast movement and associated snake-head fold in the later phase. (3) The third phase of deformation formed subhorizontal, open recumbent fold through gravitational or extensional collapses which might be generated from crustal thickening and gravitational instability. (4) The fourth phase of deformation formed moderately plunging, steeply inclined kink fold related to high-angle faulting, being closely connected with the local change of NE-trending regional foliation into NS to EW direction of strike in the vicinity of the high-angle fault.