• Title/Summary/Keyword: A* Path Planning

Search Result 1,064, Processing Time 0.027 seconds

A collision-free path planning for multiple mobile robots by using hopfield neural net with local range information (국소 거리정보를 얻을 수 있는 다중 이동로보트 환경에서의 Hopfield 신경회로 모델을 이용한 충돌회피 경로계획)

  • 권호열;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.726-730
    • /
    • 1990
  • In this paper, assuming that local range information is available, a collision-free path planning algorithm for multiple mobile robots is presented by using Hopfield neural optimization network. The energy function of the network is built using the present position and the goal position of each robot as well as its local range information. The proposed algorithm has several advantages such as the effective passing around obstacles with the directional safety distance, the easy implementation of robot motion planning including its rotation, the real-time path planning capability from the totally localized computations of path for each robot, and the adaptivity on arbitrary environment since any special shape of obstacles is not assumed.

  • PDF

A Mobile Robot Path Planning based on the Terrain with Varing Degrees of Traversability (연속적으로 변화하는 Traversability를 고려한 Mobile 로봇의 경로계획)

  • Lee, S.C.;Choo, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2315-2317
    • /
    • 1998
  • There has been extensive efforts about robot path planning. Some major approaches are the roadmap approach, potential field approach and the cell decomposition approach. However, most of the path planning methods proposed so far based on above approaches consider the terrains filled with binary obstacles, i.e., if there exists an obstacle, robot simply cannot pass the location. In this paper, A mobile robot path planning method based on the cell decomposition technique for mobile robot that takes account of the terrain with varing degrees of travers-ability is discussed.

  • PDF

Path Planning of Unmanned Aerial Vehicle based Reinforcement Learning using Deep Q Network under Simulated Environment (시뮬레이션 환경에서의 DQN을 이용한 강화 학습 기반의 무인항공기 경로 계획)

  • Lee, Keun Hyoung;Kim, Shin Dug
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.127-130
    • /
    • 2017
  • In this research, we present a path planning method for an autonomous flight of unmanned aerial vehicles (UAVs) through reinforcement learning under simulated environment. We design the simulator for reinforcement learning of uav. Also we implement interface for compatibility of Deep Q-Network(DQN) and simulator. In this paper, we perform reinforcement learning through the simulator and DQN, and use Q-learning algorithm, which is a kind of reinforcement learning algorithms. Through experimentation, we verify performance of DQN-simulator. Finally, we evaluated the learning results and suggest path planning strategy using reinforcement learning.

  • PDF

Optimal Path Planner Considering Real Terrain for Fixed-Wing UAVs (실제지형을 고려한 고정익 무인항공기의 최적 경로계획)

  • Lee, Dasol;Shim, David Hyunchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1272-1277
    • /
    • 2014
  • This article describes a path planning algorithm for fixed-wing UAVs when a real terrain should be considered. Nowadays, many UAVs are required to perform mission flights near given terrain for surveillance, reconnaissance, and infiltration, as well as flight altitude of many UAVs are relatively lower than typical manned aerial vehicles. Therefore, real terrain should be considered in path planning algorithms of fixed-wing UAVs. In this research, we have extended a spline-$RRT^*$ algorithm to three-dimensional planner. The spline-$RRT^*$ algorithm is a $RRT^*$ based algorithm, and it takes spline method to extend the tree structure over the workspace to generate smooth paths without any post-processing. Direction continuity of the resulting path is guaranteed via this spline technique, and it is essential factor for the paths of fixed-wing UAVs. The proposed algorithm confirm collision check during the tree structure extension, so that generated path is both geometrically and dynamically feasible in addition to direction continuity. To decrease degrees of freedom of a random configuration, we designed a function assigning directions to nodes of the graph. As a result, it increases the execution speed of the algorithm efficiently. In order to investigate the performance of the proposed planning algorithm, several simulations are performed under real terrain environment. Simulation results show that this proposed algorithm can be utilized effectively to path planning applications considering real terrain.

Hybrid Group Path Planning System for Multiple Visitors (다수 방문자를 위한 혼합형 그룹 방문 경로 생성 시스템)

  • Shin, Choon-Sung;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.25-31
    • /
    • 2010
  • This paper proposes a hybrid tour path planning system for multiple visitors in a museum. The proposed path planning system merges individual user profiles into a group profile by exploiting the multiplicative utilization algorithm. It then generates a tour path for the users based on mixed initiative decision of the system and the involved visitors. It automatically selects visiting sites when group users have highly similar preferences while it asks users to select their appropriate visiting sites among available sites when their preferences are different. We developed the hybrid path planning system based on a tabletop display and evaluated it with four different exhibition settings and 11 participants. We found that the mixed decision of the system and users was useful in building a tour path for a group of visitors.

  • PDF

The Path Analysis of Action Planning and Physical Activity that affect the Depression in the Aged in Community (지역사회 노인의 우울에 영향을 미치는 행동계획과 신체활동의 경로분석)

  • Hwang, Hwan
    • 한국노년학
    • /
    • v.37 no.3
    • /
    • pp.567-582
    • /
    • 2017
  • The purpose of this study is to investigate the path model consisted of action planning, physical activity, and depression in order to obtain an enhanced understanding of their relationship and to support the aged with depression in community. In order to achieve this, precedent study was reviewed and the program with physical activity and action planning was executed. the data of a investigation of action planning, physical activity, and depression of the aged participated in the program which was consisted of physical activity with Action Planning was used and 116 cases were analyzed. The data analysis was done by descriptive statistics, correlation analysis, and path analysis. The results were as follows. First, the path model was accepted. Second, the direct path of action planning to physical activity was significant. Third, the direct path of both action planning and physical activity to depression were significant. Fourth, the effect size of action planning to depression was more than that of physical activity. Fifth, the indirect path of action planning to depression through physical activity was significant. On the basis of these results, this suggests a need to add action planning on national physical activity plan, establish the delivery system for physical activity program with action planning in mental health center in community, and applicate narrative approach skills for qualitative improvement of action planning.

UAV Path Planning based on Deep Reinforcement Learning using Cell Decomposition Algorithm (셀 분해 알고리즘을 활용한 심층 강화학습 기반 무인 항공기 경로 계획)

  • Kyoung-Hun Kim;Byungsun Hwang;Joonho Seon;Soo-Hyun Kim;Jin-Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.15-20
    • /
    • 2024
  • Path planning for unmanned aerial vehicles (UAV) is crucial in avoiding collisions with obstacles in complex environments that include both static and dynamic obstacles. Path planning algorithms like RRT and A* are effectively handle static obstacle avoidance but have limitations with increasing computational complexity in high-dimensional environments. Reinforcement learning-based algorithms can accommodate complex environments, but like traditional path planning algorithms, they struggle with training complexity and convergence in higher-dimensional environment. In this paper, we proposed a reinforcement learning model utilizing a cell decomposition algorithm. The proposed model reduces the complexity of the environment by decomposing the learning environment in detail, and improves the obstacle avoidance performance by establishing the valid action of the agent. This solves the exploration problem of reinforcement learning and improves the convergence of learning. Simulation results show that the proposed model improves learning speed and efficient path planning compared to reinforcement learning models in general environments.

Research on Path Planning for Mobile Robot Navigation (이동로봇의 주행을 위한 경로 계획에 관한 연구)

  • Huh, Dei-Jeung;Lee, Woo-Young;Huh, Uk-Youl;Kim, Jin-Hwan;Lee, Je-Hi
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2401-2403
    • /
    • 2002
  • Given a certain target point, the mobile robot's navigation could be mainly considered about two areas, 'how fast and accurate' and 'how safe'. Such problems regarding the velocity and stability possess close relationship with the path in which the mobile robot navigates in. Thus, the system proposed in this research paper was constructed so the mobile robot can obtain the optimum path by utilizing the information according to the environmental map, based on the Global Path Planning. Also by inducing the Local Path Planning method, it was constructed so that the robots can avoid the obstacles, which were not shown in the environmental map on-line. Particularly, by fusing the Local and Global Path Planning together, it is possible for the robots to plan similar path. At the same time, the focus was on the materialization of effective mobile robot's navigation. It was made possible by utilizing the Fuzzy Logic Control. Also, the validity of the algorithm proposed was proven through the trial experiment.

  • PDF

Optimal path planning for the capturing of a moving object

  • Kang, Jin-Gu;Lee, Sang-Hun;Hwang, Cheol-Ho;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1419-1423
    • /
    • 2004
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Optimal path planning for the capturing of a moving object

  • Hwang, Cheol-Ho;Lee, Sang-Hun;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.186-190
    • /
    • 2003
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF