• Title/Summary/Keyword: 90$^{\circ}$ Hybrid Coupler

Search Result 33, Processing Time 0.02 seconds

Design of a Dual-Band GPS Array Antenna (이중 대역 GPS 배열 안테나 설계)

  • Kim, Heeyoung;Byun, Gangil;Son, Seok Bo;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.678-685
    • /
    • 2013
  • In this paper, we propose a design of dual-band patch antennas for Global Positioning System(GPS) applications, and the designed antenna is used as an individual element of GPS arrays. A low distortion and a high isolation of the array are achieved by adjusting rotating angles of each array element. The antenna consists of two radiating patches that operate in the GPS $L_1$ and $L_2$ bands, and the two ports feeding network with a hybrid chip coupler is adopted to achieve a broad circular polarization(CP) bandwidth. The rotating angles of each antenna element are varied with four directions(${\phi}=0^{\circ}$, ${\phi}=90^{\circ}$, ${\phi}=180^{\circ}$, ${\phi}=270^{\circ}$) in order to minimize the pattern distortion and maximize the isolation among array elements. The measurement shows bore-sight gains of 0.3 dBic($L_1$) and -1.0 dBic($L_2$) for the center element. Bore-sight gains of 1.6 dBic($L_1$) and 1.0 dBic($L_2$) are observed for the edge element. This results demonstrate that the proposed antenna is suitable for GPS array applications.

A Study on a Planar Array Antenna Design with a Flat-Topped Radiation Pattern (구형 방사 패턴을 갖는 평면 배열 안테나 설계에 대한 연구)

  • Eom Soon-Young;Pyo Cheol-Sig;Jeon Soon-Ick;Kim Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.896-905
    • /
    • 2004
  • In this paper, the design, fabrication and experiment on a planar array antenna with a flat-topped radiation pattern for a mobile base station antenna were described. The current distribution of an antenna aperture, which is easily realizable in a feeding network compared with the conventional one of sin(x)/x was optimized for shaping a desired flat-topped radiation pattern. The planar array antenna designed in this paper has a rectangular lattice and is composed of array elements of 16${\times}$8. Each radiating element, which is a microstrip element fed coaxially, has a linear vertical polarization and the feed network which use a Wilkinson power divider and a 180$^{\circ}$ ring hybrid coupler as a base element is designed. The flat-topped radiation pattern with 90$^{\circ}$ is shaped by 16 array elements with the element spacing of 0.55 λ$_{ο}$ in the azimuth plane, and the normal radiation pattern with 10$^{\circ}$ is shaped by 8 array elements with the element spacing of 0.65 λ$_{ο}$ in the elevation plane. Also, the planar array antenna is symmetrically divided into four parts. It consists of one hundred-twenty-eight radiating elements, thirty-two 1-4 column dividers, low 1-8 row dividers and one 1-4 input power divider. In order to verify electrical performances of the planar way antenna proposed in this paper, the experimental breadboard operated in tile band of 1.92~2.17 GHz(IMT2000 band) was fabricated, and its experimental results were a good agreement with simulation ones.

A Study on Mobile Antenna System Design with Tri-band Operation for Broadband Satellite Communications and DBS Reception (광대역 위성 통신/방송용 삼중 대역 이동형 안테나 시스템 설계에 관한 연구)

  • Eom Soon-Young;Jung Young-Bae;Son Seong-Ho;Yun Jae-Seung;Jeon Soon-Ick
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.461-475
    • /
    • 2006
  • In this paper, it is described about the tri-band mobile antenna system design to provide broadband multimedia and direct broadcasting services using goo-stationary Koreasat 3, simultaneously operated in Ka/K/Ku band. The radiating part of the antenna system with a fan beam characteristic in the elevation plane is composed of the quasi-offset dual shaped reflector and the tri-band feeder. The tri-band feeder is also composed of the Ka/K dual band feeder with the protruding dielectric rod, the circular polarizer, the ortho-mode transducer and the circular-polarized Ku band feed array. Especially, the Ka/K dual band circular polarizer was realized firstly using the comb-type structure. For fast satellite-tracking on the movement, the Ku band feed array has the structure of the $2{\times}2$ active phased array which can make electrical beams. And, the circular-polarized characteristic in the feed array was improved by $90^{\circ}$ rotating arrangement of four radiating elements polarized circularly by a $90^{\circ}$ hybrid coupler, respectively. Four beam forming channels to make electrical beams at Ku band are divided into the main beam channel and the tracking beam channel in the output, and noise temperature characteristics of each channel were analyzed on the basis of the contributions of internal sub_units. From the fabricated antenna system, the output power at $P_{1dBc}$ of Ka_Tx channel was measured more than 34.1 dBm and the measured noise figures of K/Ku_Rx channels were less than 2.4 dB and 1.5 dB, respectively, over the operating band. The radiation patterns with co- and cross-polarization in the tri-band were measured using a near-field measurement in the anechoic chamber. Especially, Ku radiation patterns were measured after correcting each initial phase of active channels with partial radiation patterns obtained from the independent excitation of each channel. The antenna gains measured in Ka/K/Ku band of the antenna system were more than 39.6 dBi, 37.5 dBi, 29.6 dBi, respectively. And, the antenna system showed good system performances such as Ka_Tx EIRP more than 43.7 dBW and K/Ku_Rx G/T more than 13.2 dB/K and 7.12 dB/K, respectively.