• Title/Summary/Keyword: 9-methyl folate

Search Result 3, Processing Time 0.019 seconds

9-Methyl Folate, an Antagonist of Folic Acid : Ist Effect on the Metabolism of Folic Acid in the Rat (염산의 항비타민제인 9-Methyl Folate가 흰쥐의 엽산대사에 미치는 영향)

  • Min, Hye-Seon
    • Journal of Nutrition and Health
    • /
    • v.24 no.4
    • /
    • pp.337-343
    • /
    • 1991
  • The effect of 9-methyl folate on histidine oxidation, the uptake of an injected dose of $[^{3}H]folate$ by the livers and kidneys, the hepatic and blood folate levels were investigated by feeding crude x-methyl folate(XMF) at a level of 5 g per kg diet. 9-Methyl folate is konwn as a major forate antagonist in XMF to produce deficiency signs in rat. Feeding of XMF decreased histidine oxidation and hepatic folate levels significantly, which showed the function of 9-methyl folate as an antifolate in rats. The hepatic uptake of labeled folate in XMF- fed rats was decreased significantly. These data led to conclude that 9-methyl folate inhibited folate uptake and retention by tissue, especially liver, which could explain the low liver folate levels and the decreased histidine oxidation. However, only very low level of 9-methyl folate was detected in liver. It suggested that 9-methyl folate may be metabolized very quickly in the liver after uptaken.

  • PDF

A Critical Evaluation of the Correlation Between Biomarkers of Folate and Vitamin $B_{12}$ in Nutritional Homocysteinemia (엽산과 비타민 $B_{12}$ 결핍에 의한 호모시스테인혈증 흰쥐의 조직내 비타민 지표간의 상관관계 분석)

  • Min, Hye-Sun;Kim, Mi-Sook
    • Journal of Nutrition and Health
    • /
    • v.42 no.5
    • /
    • pp.423-433
    • /
    • 2009
  • Folate and vitamin $B_{12}$ are essential cofactors for homocysteine (Hcy) metabolism. Homocysteinemia has been related with cardiovascular and neurodegenerative disease. We examined the effect of folate and/or vitamin $B_{12}$ deficiency on biomarkers of one carbon metabolism in blood, liver and brain, and analyzed the correlation between vitamin biomarkers in mild and moderate homocysteinemia. In this study, Sprague-Dawley male rats (5 groups, n = 10) were fed folatesufficient diet (FS), folate-deficient diet (FD) with 0 or 3 g homocystine (FSH and FDH), and folate-/vitamin $B_{12}$-deficient diet with 3 g homocystine (FDHCD) for 8 weeks. The FDH diet induced mild homocysteinemia (plasma Hcy 17.41 ${\pm}$ 1.94 nmol/mL) and the FDHCD diet induced moderate homocysteinemia (plasma Hcy 44.13 ${\pm}$ 2.65 nmol/mL), respectively. Although liver and brain folate levels were significantly lower compared with those values of rats fed FS or FSH (p < 0.001, p < 0.01 respectively), there were no significant differences in folate levels in liver and brain among the rats fed FD, FDH and FDHCD diet. However, rats fed FDHCD showed higher plasma folate levels (126.5 ${\pm}$ 9.6 nmol/L) compared with rats fed FD and FDH (21.1 ${\pm}$ 1.4 nmol/L, 22.0 ${\pm}$ 2.2 nmol/L)(p < 0.001), which is the feature of "ethyl-folate trap"by vitamin $B_{12}$ deficiency. Plasma Hcy was correlated with hepatic folate (r = -0.641, p < 0.01) but not with plasma folate or brain folate in this experimental condition. However, as we eliminated FDHCD group during correlation test, plasma Hcy was correlated with plasma folate (r = -0.581, p < 0.01), hepatic folate (r = -0.684, p < 0.01) and brain folate (r = -0.321, p < 0.05). Hepatic S-adenosylmethionine (SAM) level was lower in rats fed FD, FDH and FDHCD than in rats fed FS and FSH (p < 0.001, p < 0.001 respectively) and hepatic S-adenosylhomocysteine (SAH) level was significantly higher in those groups. The SAH level in brain was also significantly increased in rats fed FDHCD (p < 0.05). However, brain SAM level was not affected by folate and/or vitamin $B_{12}$ deficiency. This result suggests that dietary folate- and vitamin B12-deficiency may inhibit methylation in brain by increasing SAH rather than decreasing SAM level, which may be closely associated with impaired cognitive function in nutritional homocysteinemia.

5,10-Methylenetetrahydrofolate reductase 677C>T polymorphism and microsatellite instability in sporadic colorectal cancer (산발성 현미부수체 불안정성 대장암의 임상적 의의 및 MTHFR 677C>T 유전자 다형성과의 관계)

  • Kwon, Su-kyung;Kim, Jong Woo;Kim, Nam Keun
    • Korean Journal of Clinical Oncology
    • /
    • v.9 no.2
    • /
    • pp.80-86
    • /
    • 2013
  • Purpose: Hypermethylation of human mut L homologue 1 (hMLH1) promoter region is known to cause sporadic microsatellite instability (MSI) colorectal cancers. 5,10-methylenetetrahydrofolate reductase (MTHFR) is the key enzyme in folate metabolism, acting as a methyl donor for DNA methylation. In this study, we investigate whether the polymorphism of MTHFR 677C>T plays a role in the alteration of the promoter-specific hypermethylation, predisposing to MSI colorectal cancers. Methods: Total of 487 sporadic colorectal cancer patients in CHA Bundang Medical Center were collected. MSI was identified when two or more are positive among five microsatellite markers (BAT25, BAT26, D17S250, D5S346, D2S123). The others were classified as microsatellite stable (MSS). Polymorphism of MTHFR 677C>T was genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: MSI was observed in 65 of 487 patients (12.73%). MSI colorectal cancers showed similar clinicopathological features with previously reported; younger age onset, right-sided preponderance, mucinous and poorly differentiated histology, lower stage, fewer lymph node metastases than MSS tumors (each P<0.05). The frequency of MTHFR 677TT genotype was 17.7% in the MSI group higher than 14.6% in the MSS group (P=0.17). Although not statistically significant, compared to the MTHFR 677CC referent, MTHFR 677 CT+TT genotype was more likely to have MSI than MSS (odds ratio, 1.81; 95% confidence interval, 0.94 to 3.68; P=0.06). Conclusion: This study demonstrated higher frequency of MTHFR 677TT genotype in MSI colorectal cancers. Furthermore, individuals with MTHFR 677CT+TT variant type might potentially develop MSI rather than MSS colorectal cancers.