• Title/Summary/Keyword: 8hr wearing

Search Result 11, Processing Time 0.026 seconds

The momentary movement of soft contact lens by blinking : The change of movement depending on wearing time (손목에 의한 소프트콘택트렌즈의 순간적인 움직임 : 착용시간의 증가에 따른 움직임의 변화)

  • Park, Sang-Il;Lee, Youn Jin;Lee, Heum-Sook;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • To investigate the momentary movement pattern of soft contact lens(SCL) depending on wearing time, eight types of soft contact lenses were worn by 10 normal subjects and the momentary movements of SCLs were estimated using by high speed camera(FASTCAM ultima 1024). When the momentary movements of SCLs in the cornea between blinkings were compared after 15 min wearing, the vertical movements of all eight SCLs were about 2 times larger than the horizontal movement but the extent of these movement difference was a function of kinds of SCLs. The momentary moving distance of SCL varied from the kinds of SCLs, which A and B lens, daily wear lens, moved significantly larger distance compared with other SCLs. The momentary movements between blinkings decreased significantly after 8hr wear of SCLs. The extents were different when SCLs were compared with each other, which the reduction range of horizontal and vertical movement was 24.6~60.0% and 20.4~94.3%, respectively. The A, B and C lenses which had relatively higher water content showed the larger movement reduction after SCL wear. This results suggest that wearing SCL for some hours decreases the movement of SCl, which can induce the change of tear flow.

  • PDF

Analysis of User Experience for the Development of Smart Golf-wear (스마트 골프웨어 개발을 위한 사용자경험 분석)

  • Sin, Sunmi;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.98-105
    • /
    • 2021
  • This study investigates and analyzes user preferences for golf wear with a sense of wear and smart function for the development of smart golf wear based on user convenience. A survey was conducted on 124 males in the age range of 40-60s that consisted of professional golfers, amateur golfers and the public with golf experience (such as major golf consumers) from August 1 to August 30, 2019 (IRB NO. 1040198-190617-HR-057-03); consequently, a 117 copies were accepted for analysis. The findings are as follows. The elbow (4.3%) of golf wear is unsatisfactory. The important part of the golf swing motion is the shoulder (39.3)>, elbow (30.8%)>, and wrist (6.8%). In addition, the unsatisfactory wearing of golf wear due to golf swing movements indicated that the shoulder or elbow area was pulled or the bottom of the top was raised during the back swing movements. The survey results on the expected discomfort when wearing smart wear are 'discomfort of obstruction when wearing' (53.8%), 'discomfort of washing' (17.1%), and 'weight of attached machine' (13.7%). Opinions such as 'Will not feel good when the sensor is attached' were investigated. The examination of the preference for golf wear equipped with smart functions indicated that a posture correction function to correct the golf swing posture is the most desired quality that is also considered important when correcting posture.

Effects of Differents types of Clothing and Colours on Clothing Microclimate in the Subjects wearing Sports Wear under Sunlight (일광하에서 운동시의 스포츠웨어 색상과 의복형태가 의복기후에 미치는 영향)

  • Kim, Tae-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.3 no.3
    • /
    • pp.271-276
    • /
    • 2001
  • In this study, We endeavored to revaluate the effects of different types of clothing and colors on clothing microclimate in the subjects wearing sports wear at sunlight environment. This study was conducted 4 different kinds (cotton 100%) of clothing ensembles, that was W-1(long trousers and shirt of white color), B-1 (long trousers and shirt of black color), W-s (short trousers and shirt white color), B-s (short trousers and shirt black color) and were done in a climate chamber under sunlight ambient temperature ($33.67{\pm}1.8^{\circ}C$, $46.0{\pm}8.5%RH$) by three males subject who are in good healthy. Start a 20-min rest period, 20-min bouts of exercise and final 20-min recovery period were performed. The kinetic load was given for 20 minutes under the condition of 6.0 km/hr walking speed on the treadmill. The results is as followed In case of same type of garment, temperature within clothing which is based on difference of color the white ensemble keeps higher temperature than black one. According to distribution chart of temperature within clothing in case of chest, white one shows higher temperature than black one, in case of back, black one shows higher temperature than white one. Difference of heart rate was so clear and sequence is W-1>B-1>W-s>B-s, so we could find same tendency with temperature within clothing.

  • PDF

Relationships between Insensible Perspiration and Thermo Physiological Factors during Wearing Seasonal Clothing Ensembles in Comfort (쾌적한 상태에서 계절별 의복을 착용하고 있는 동안 불감증설과 온열 생리 요소들 간의 관련성)

  • Lee, Joo-Young;Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1700-1709
    • /
    • 2007
  • The purpose of this study was to examine the relationships between thermo-physiological factors and the insensible loss of body weight(IL) of resting women wearing seasonal comfortable clothing. Air temperature was maintained at a mean of 22.5, 24.7, and 16.8 for spring/fall, summer and winter, respectively. We selected a total of 26 clothing ensembles(8 ensembles for spring/fall, 7 ensembles for summer, and 11 ensembles for winter). The results showed that 1) IL was $19{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for spring/fall environment, $21{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for summer, $18{\pm}6{\cdot}m^{-2}{\cdot}hr$ for winter(p<.001). 2) Insensible water loss through respiratory passage(IWR) showed the reverse tendency to IL. IWR was $6{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for winter and $5{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for summer. This difference was significant(p<.001). 3) The proportion of IWR out of whole insensible water loss(IW), had a mean of the mean 28% for summer and 38% for winter(p<.001). 4) In comfort, the heat loss by IW out of heat production had a mean of 25% for spring/fall, 27% for summer, and 23% for winter. 5) There was a weak negative correlation between It and clothing insulation/body surface area covered by clothing. 6) There were significant correlations between IL and air temperature$(T_a)$, air humidity$(H_a)$, energy metabolism, ventilation, mean skin temperature $\={T}_{sk})$ and clothing microclimate humidity$(H_{clo})$. However, the coefficients were less than 0.5. In conclusion, there were weak relationships between the IL and thermo-physiological factors. However, when subjects rested in thermal comfort, the IL was maintained in a narrow range even though the clothing insulation and air temperature were diverse.

The Effects of Season on Physiological Responses of Human Body, Clothing Microclimate, and Subjective Sensations (인체의 생리적 반응과 의복 기후, 주관적 감각에 미친 계절의 영향)

  • 김양원
    • Journal of the Korean Home Economics Association
    • /
    • v.30 no.4
    • /
    • pp.15-26
    • /
    • 1992
  • To investigate the seasonal effects on physiological responses of human body, clothing micro-climate, and subjective sensation, selected the cloths the most frequently dressed by men in spring and fall, and completed wearing trials in the climatic chamber. The results are as follows: 1. Rectal temp. ranged 36.8-37.1$^{\circ}C$ in either spring or fall, and no seasonal effect was found. 2. In skin temp., there was no seasonal effect in forehead, abdomen, and forearm. Skin temp. of chest was higher in spring than in fall. On the contrary, reverse was true in high and leg. Average skin temp. ranged 32.2-33.2$^{\circ}C$ in spring and 32.9-34.$0^{\circ}C$ in fall. 3. Average total sweat rate of spring, 79.4g/hr, was smaller than that of fall, 110.9g/hr. 4. Clothing temp. ranged 28.1-32.8$^{\circ}C$ in spring and 27.6-31.$0^{\circ}C$ in fall. Clothing humidity ranged 36.9-48.9% in spring and 38.2-51.1% in fall. Therefore, clothing microclimate was higher during fall than during spring. As results, skin temp. of the body core except chest did not show seasonal variation, but there was obvious seasonal variation in skin temp. of the extremities. Therefore, seasonal variation should be take into consideration in the experiments related to the cloth. In addition, standard for each season and the degree of work performance should be re-established in clothing micro-climate.

  • PDF

The Change of Blink Rate by Wearing Soft Contact Lens (소프트콘택트렌즈 착용에 의한 순목 횟수 변화)

  • Lee, Youn-Jin;Park, Sang-Il;Lee, Heum-Sook;Park, Mi-Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.3
    • /
    • pp.173-179
    • /
    • 2006
  • We investigated the change of the blink rate by wearing soft contact lens(SCL). Eight types of soft contact lenses were worn by twelve asymptomatic contact lens wearers. When wearers were worn SCLs for 15 min, the average blink rate was 20.0 blinks/min, which was a statistically significant increase compared to 13.3 blinks/min, the average blink rate of non-SCL-worn eye. After 8 hr of lens wear, the average blink rate was 24.3 blinks/min, and it was 11 blinks/min more than that of non-SCL-worn eye and 4 blinks/min more than that of 15 min SCL-worn eye. There were a little difference of the blink rate in types of lens, which the blink rate range of all lens after 15 min of lens wear was 18.1~20.9 blinks/min and that after 8 hr of lens wear was 22.9~24.9 blinks/min. When wearing A lens(vifilcon, 0.06 mm) having thin center thickness, wearers showing difference of 10.0~11.9 blinks/min between non-SCL-worn eye and 15 min SCL-worn eye reached 16.7% and it was more than that of relatively thick B lens(0.17 mm) and C lens(0.14 mm). This result suggest that the center thickness was not unique factor of the blink rate change and other factors would have synthetically influence on the blink rate change. In the case of B lens and C lens of hilafilcon material but having different center thickness and water content, wearers increasing more than 4.0 blinks/min after 8 hr of lens wear was 58.3% and 41.7%, respectively. This result have provided information that the lenses of similar materials but different center thickness and water content could cause individually the different change of the blink rate.

  • PDF

Assessment of Stability and Safety of Maskne Cosmetic

  • Minjung, Kim;Jeonghee, Kim
    • Journal of Fashion Business
    • /
    • v.26 no.6
    • /
    • pp.105-115
    • /
    • 2022
  • Wearing a mask is still advised since COVID-19 continues to spread. However, masks may also irritate the skin and cause mask acne, often known as "maskne", which is a type of acne mechanica caused by friction between the skin and clothing. Therefore, there is a need to develop an effective maskne cosmetic. In this study, we made the maskne cosmetics containing humulus lupulus extract and copper tripeptide-1 and investigated its stability and safety. To measure stability, a centrifugation test and heat-cool cycling were done, and changes in viscosity and pH were measured for 8 weeks. The Cumulative Irritation Test (CIT, WKIRB-202111-HR-096) was performed and positive reactions were determined by the ICDRG criteria. The results indicated that the samples were stable after centrifugation, temperature cycling, viscosity, and pH tests. In addition, cosmetic safety test results revealed that maskne cosmetics containing humulus lupulus extract and copper tripeptide-1 did not cause any skin responses. These findings indicate that prepared maskne cosmetics' stability and safety were comparable to those of currently available commercial cosmetics.

Physiological Effects of Different Underwear Materials Thermoregulatory Response during Exercise with Sweating at Cold Environments (한랭환경하에서 운동발한시 인체의 체온조절반응에 대한 내의소재의 생리학적 의의)

  • Kwon, Oh-Kyung;Kim, Tae-Kyu;Son, Du-Hun;Park, Sung-Han
    • Fashion & Textile Research Journal
    • /
    • v.1 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • This study conducted 4 different kinds of underwear materials, which were A (Cotton 100%), B (Wool 100%), C (Cotton/Wool, 50/50%) and D (Acrylic/Cotton, 50/50%) and were done in a climate chamber under cold ambient $10{\pm}1^{\circ}C$, $40{\pm}5%RH$ by 6 male subjects who were in good health. Physiological parameters such as rectal and local skin temperature(forehead, forearm, hand, trunk, thigh, leg, foot, back and chest), heart rate, body weight loss, clothing microclimate, blood lactic acid concentration, and wearing sensation were measured. Started with a 15-min rest period, 15-min of exercise 1 (the condition of 4.5 mile/hr walking speed equivalent to with 8.5 Kcal energy consumption on the treadmill) period, 15-min rest period, exercise 2 (after 3minutes warming-up at 3.0. 3.7, 4.5. 5.2. 6.0, 6.7 mile/hr) until exhaustion period, and final 15-min of recovery period were performed. The results were as follows: The lowest mean skin temperature was acrylic/cotton in order of wool > cotton/wool > cotton > acrylic/cotton (F=13. 79. p<0.00l). Most of all skin temperature by parts of body had turned out in sequence of temperature wool > cotton/wool > acrylic/cotton > cotton. Fore arm part showed highest temperature about $32.43^{\circ}C$ on wool and had a tendency approximately $1.8^{\circ}C$ higher than cotton which had the lowest temperature, and had the biggest difference among garments in terms of skin temperature. The back temperature within clothing showed about $2^{\circ}C$ higher than the chest temperature within clothing. but the back humidity within clothing showed about 4~12% higher than the chest humidity within clothing. Body weight loss by each garment was this sequence; cotton > acrylic/cotton > wool > cotton/wool.

  • PDF

Effects of High-heeled Shoe with Different Height on the Balance during Standing and Walking (하이힐 높이에 따른 균형성)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.479-486
    • /
    • 2010
  • The purpose of this study was to determine the effects of high-heeled shoe on the quiet standing and gait balance. Twenty women (mean height: $161.6{\pm}3.3\;cm$, mean body mass: $53.8{\pm}6.3\;kg$, mean age: $23.8{\pm}2.7$ yrs..) who were without history or complain of lower limb pain took part in this study. They were asked to stand quietly on a force platform for 30 sec and walk on it at their preferred walking speed (mean speed $3.14{\pm}0.5\;km/hr$.) with wearing three different high-heeled shoe, 3, 7, 9 cm high for collecting data. Data were randomly recorded to collect two trials for quiet standing and five trials for walking The parameters to have been analyzed for comparison between three conditions of the height of high-heeled shoe were COP(Center of Pressure) range, COP velocity, sway area, and free moment on the static balance and COP range, COP velocity, and free moment on the dynamic balance. In this study, high-heel height affected on the COP range and velocity in the ante-posterior direction during walking, dynamic balance, but didn't affect on the quiet standing, static balance.

Efficacy of Cooling Vests for Alleviating Heat Strain of Farm Workers in Summer (여름철 농민의 서열 부담 경감을 위한 냉각조끼의 성능 평가)

  • Choi Jeong-Wha;Kim Myung-Ju;Lee Joo-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.8 s.145
    • /
    • pp.1176-1187
    • /
    • 2005
  • The purpose of this study was to evaluate the efficiency of cooling vests developed for farm workers harvesting red pepper in summer. The study was performed using the following two steps: 1) Climatic chamber test, 2) Field test. For the chamber test, a work environment was simulated as $33^{\circ}C$ and $65\%$RH, and the thermo-physiological and subjective responses were measured with and without cooling vests. Twelve young males participated as subjects. For the field test, three farmers participated while harvesting red pepper on the form, in summer. The measurements used were same as in the chamber test. Subjects were tested without any cooling vests, as a control. They were tested wearing vests with 2 frozen gel packs (CV2: Cooling area, $308cm^2$), and vests with 4 frozen gel packs (CV4: Sooting area, $616cm^2$). As a result of the chamber test, rectal temperature($T_{re}$) and mean skin temperature( $T_{sk}$) were lower in both CVs than in Control, and this tendency was statistically significant in CV4 (p<.05). Clothing microclimate temperature ($T_{clo}$) and total sweat rate (TSR) were significantly lower when wearing cooling vests (p<.05) Heart rate (HR) was also lower in wearing cooling vests than in Control, and the speed of recovery to the comfort level was faster when the subjects wore cooling vests. In addition, subjects felt 'less hot, less humid, and less uncomfortable' in both CVs than in Control. Field tests showed a similar tendency with the chamber tests. In particular, wearing the cooling vest was effective in restraining the raise of $T_{clo}$ on the back. It can be concluded that the cooling vest was effective in alleviating heat strain and discomfort in both the chamber test and the field test, despite the cooling area of the cooling vest being just $3.4\%$ of the body surface area ($616cm^2$).