• Title/Summary/Keyword: 8KVR

Search Result 2, Processing Time 0.016 seconds

Real-time multi-GPU-based 8KVR stitching and streaming on 5G MEC/Cloud environments

  • Lee, HeeKyung;Um, Gi-Mun;Lim, Seong Yong;Seo, Jeongil;Gwak, Moonsung
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.62-72
    • /
    • 2022
  • In this study, we propose a multi-GPU-based 8KVR stitching system that operates in real time on both local and cloud machine environments. The proposed system first obtains multiple 4 K video inputs, decodes them, and generates a stitched 8KVR video stream in real time. The generated 8KVR video stream can be downloaded and rendered omnidirectionally in player apps on smartphones, tablets, and head-mounted displays. To speed up processing, we adopt group-of-pictures-based distributed decoding/encoding and buffering with the NV12 format, along with multi-GPU-based parallel processing. Furthermore, we develop several algorithms such as equirectangular projection-based color correction, real-time CG overlay, and object motion-based seam estimation and correction, to improve the stitching quality. From experiments in both local and cloud machine environments, we confirm the feasibility of the proposed 8KVR stitching system with stitching speed of up to 83.7 fps for six-channel and 62.7 fps for eight-channel inputs. In addition, in an 8KVR live streaming test on the 5G MEC/cloud, the proposed system achieves stable performances with 8 K@30 fps in both indoor and outdoor environments, even during motion.

Extraction of Road Networks from High Spatial Resolution Satellite Images by Wavelet Transform and Multiresolution Analysis (웨이블릿 변환과 다중해상도분석을 이용한 고해상도 위성영상에서의 도로망 추출)

  • Jung, In-Chul;Sohn, Ji-Yeon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.3
    • /
    • pp.61-70
    • /
    • 2001
  • This paper presents a new method to extract semi-automatically roads from high spatial resolution satellite imagery. This method is based both on wavelet transform and on multiresolution analysis combined in the "$\grave{a}$ trous" algorithm. As an urban road network consists on different classes of streets, multiresolution processing allows to extract the streets class by class. The method was applied to a KVR-1000 image on a part of Busan Metropolitan City. The method was carried out for the road extraction of three different widths and it succeeded in extracting good fitted strips. The accuracy analysis for three types of streets was also performed. The overall accuracy in 4 pixels of width is 80.5%. The result suggests that this method can be used to update road networks in the studied urban network. In summary, the multiresolution approach based on the wavelet transform, used in this study, is regarded as one of effective methods to extract urban road network from high spatial resolution satellite images.

  • PDF