• Title/Summary/Keyword: 85% Hot melted

Search Result 2, Processing Time 0.016 seconds

Experimental Study on Performances and Economic Evaluations of the Qualify of the Material for Light Path (광도파로(光導波路)를 위한 재질의 성능과 경제적 평가를 위한 실험적 연구)

  • Pak, Ee-Tong;Lee, Kang-Ju;Park, Hae-Sung
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.175-179
    • /
    • 2007
  • This experimental demonstration has successfully shown that it is possible to use direct sunlight for the illumination of deeper building zones using the material for light path system(light duct). Three kinds of reflectors which were 95% Silver vaporizing fixed, 85% Anodized and 85% Hot melted applied to evaluate and compare their performances each others. Also, these three kind of reflectors were compared in view point of economics. The most high performance was obtained in 95% Silver vaporizing fixed reflector hater than another reflectors of 85% Anodized reflector and 85% Hot melted reflector even though more high production cost in 95% Silver vaporizing fixed reflector. The rest two reflectors of 85% Anodized and 85% Hot melted $10{sim}15%$ less performance than 95% Silver vaporizing fixed reflector but their production cost were low than the production cost of 95% Silver vaporizing fixed reflector which identified very weak and light yellow color in the light.

The Effects of Hot Corrosion on the Creep Rupture Properties of Boiler Tube Material (보일러 管材料의 크리프破斷特性에 미치는 고온부식의 影響)

  • 오세욱;박인석;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.236-242
    • /
    • 1989
  • In order to investigate the effects of hot corrosion on the creep rupture properties and creep life of 304 stainless steel being used as tube materials of heavy oil fired boiler, the creep rupture tests were carried out at temperature 630.deg.C, 690.deg.C and 750.deg.C in static air for the specimens with or without coating of double layer corrosives according to the new hot corrosion test method simulating the situation commonly observed on superheater tubes of the actual boiler. The double layer corrosives are 85% V$_{2}$O$_{5}$ + 10% Na$_{2}$So$_{4}$ + 5% Fe$_{2}$O$_{3}$ as the inner layer corrosive being once melted at 900.deg. C and crushed to powder, and 10% V$_{2}$O$_{5}$ + 85% Na$_{2}$SO$_{4}$ +5% Fe$_{2}$O$_{3}$ as the outer layer corrosive. As results, in the specimen coated with the double layer corrosives, the rupture strength was extremely lowered and showed a large difference each other. The rupture ductility also lowered remarkably as a result of the brittle fracture mode due to hot corrosion. These results indicate that hot corrosion could essentially alter the creep fracture mechanism. From the metallographic observation, it was clarified that the rupture life of 304 stainless steel subjected to hot corrosion was chiefly determined by the behavior of the aggressive intergranular penetration of sulfides.des.