• Title/Summary/Keyword: 802.16

Search Result 587, Processing Time 0.028 seconds

An Analytical Model for LR-WPAN Performance in the Presence of Hidden Nodes (은닉노드를 고려한 LR-WPAN 성능의 분석적 모델)

  • Lee, Kang-Woo;Shin, Youn-Soon;Hyun, Gyu-Wan;Ahn, Jong-Suk;Kim, Hie-Cheol
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.133-142
    • /
    • 2009
  • This paper proposes an analytical performance model of IEEE 802.15.4 in the presence of hidden nodes. Conventional 802.15.4 mathematical models assume ideal situations where every node can detect the transmission signal of every other nodes different from the realistic environments. Since nodes can be randomly located in real environments so that some nodes' presence is hidden from other ones, this assumption leads to wrong performance evaluation of 802.15.4. For solving this problem, we develop an extended performance model which combines the traditional 802.15.4 performance model with one for accounting the presence of hidden nodes. The extended model predicts the rapid performance degradation of 802.15.4 due to the small number of hidden nodes. The performance, for example, degrades by 62% at maximum when 5% of the total nodes are hidden. These predictions are confirmed to be equal to those of ns-2 simulations by less than 6% difference.

Deep learning-based classification for IEEE 802.11ac modulation scheme detection (IEEE 802.11ac 변조 방식의 딥러닝 기반 분류)

  • Kang, Seokwon;Kim, Minjae;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.45-52
    • /
    • 2020
  • This paper is focused on the modulation scheme detection of the IEEE 802.11 standard. In the IEEE 802.11ac standard, the information of the modulation scheme is indicated by the modulation coding scheme (MCS) included in the VHT-SIG-A of the preamble field. Transmitting end determines the MCS index suitable for the low signal to noise ratio (SNR) situation and transmits the data accordingly. Since data field decoding can take place only when the receiving end acquires the MCS index information of the frame. Therefore, accurate MCS detection must be guaranteed before data field decoding. However, since the MCS index information is the information obtained through preamble field decoding, the detection rate can be affected significantly in a low SNR situation. In this paper, we propose a relatively robust modulation classification method based on deep learning to solve the low detection rate problem with a conventional method caused by a low SNR.

Design of a physical layer of IEEE 802.15.4q TASK for IoT (IoT를 위한 IEEE 802.15.4q 기반 TASK 물리 계층 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2020
  • IoT has been consistently used in various fields such as smart home, wearables, and healthcare. Since IoT devices are small terminals, relatively simple wireless communication protocols such as IEEE 802.15.4 and ISO 18000 series are used. In this paper, we designed the 802.15.4q 2.4 GHz TASK physical layer. Physical protocol data unit of TASK supports bit-level interleaving and shortened BCH encoding. It is spread by unique ternary sequences. There are four spreading factors to choose the data rate according to the communication channel environment. The TASK physical layer was designed using verilog-HDL and verified through the loop-back test of the transceiver. The designed TASK physical layer was implemented in a fpga and tested using MAXIM RFICs. The PER was about 0% at 10 dB SNR. It is expected to be used in small, low power IoT applications.

Efficient GTS Allocation Method of Industrial IEEE 802.15.4 Network for Real-time Periodic I/O Data (효율적 GTS 할당 기법을 통한 산업용 IEEE 802.15.4 망의 실시간 주기성 데이터의 전송 기법)

  • Kim, Dong-Sung;Lee, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.510-516
    • /
    • 2010
  • In this paper, a dynamic GTS allocation method of wireless control networks is proposed for the use of factory automation using IEEE 802.15.4 MAC protocol. A superframe of IEEE 802.15.4 is applied to the transmission method of real-time periodic I/O data of wireless control systems within the limited time in factory environment. The method is proposed for efficient transmission of real-time periodic I/O traffic. The simulation results show the average network utilization and available I/O node numbers could be increased by the proposed method.

Security and Reliability of the 4-way Handshake Protocol in IEEE 802.11i (IEEE 802.11i 4-way 핸드쉐이크 프로토콜의 안전성과 신뢰성)

  • Park, Chang-Seop;Woo, Byung-Duk
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.317-324
    • /
    • 2009
  • In this paper, a 4-way Handshake protocol in the IEEE 802.11i is analyzed in terms of both security and reliability. It is shown that the 4-way Handshake protocol breaks down under some conditions due to a MIC (message integrity code) failure, and a solution to fix it is proposed. It is also proposed that a new 2-way Handshake protocol which is more secure and efficient than the 4-way Handshake protocol.

Improved ErtPS Scheduling Algorithm for AMR Speech Codec with CNG Mode in IEEE 802.16e Systems (IEEE 802.16e 시스템에서의 CNG 모드 AMR 음성 코덱을 위한 개선된 ErtPS 스케줄링 알고리즘)

  • Woo, Hyun-Je;Kim, Joo-Young;Lee, Mee-Jeong
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.661-668
    • /
    • 2009
  • The Extended real-time Polling Service (ErtPS) is proposed tosupport QoS of VoIP service with silence suppression which generates variable size data packets in IEEE 802.16e systems. If the silence is suppressed, VoIP should support Comfort Noise Generation (CNG) which generates comfort noise for receiver's auditory sense to notify the status of connection to the user. CNG mode in silent-period generates a data with lower bit rate at long packet transmission intervals in comparison with talk-spurt. Therefore, if the ErtPS, which is designed to support service flows that generate data packets on a periodic basis, is applied to silent-period, resources of the uplink are used inefficiently. In this paper, we proposed the Improved ErtPS algorithm for efficient resource utilization of the silent-period in VoIP traffic supporting CNG. In the proposed algorithm, the base station allocates bandwidth depending on the status of voice at the appropriate interval by havingthe user inform the changes of voice status. The Improved ErtPS utilizes the Cannel Quality Information Channel (CQICH) which is an uplink subchannel for delivering quality information of channel to the base station on a periodic basis in 802.16e systems. We evaluated the performance of proposed algorithm using OPNET simulator. We validated that proposed algorithm improves the bandwidth utilization of the uplink and packet transmission latency

A Study of Timing Synchronization Technique for 802.16e based System (802.l6e 기반 시스템을 위한 시간동기화 방법에 관한 연구)

  • Kim, Hyun-Dong;Choe, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.451-453
    • /
    • 2005
  • In this paper, a preamble structure and a timing synchronization method for 802.16e based system are developed. The performances of the timing offset estimation in multipath fading channel is compared in terms of absolute mean. The simulation result shows that the proposed method has smaller mean.

  • PDF

Design of Efficient FFT Processor for IEEE 802.16e Mobile WiMax Systems (IEEE 802.16e Mobile WiMax 시스템을 위한 효율적인 FFT 프로세서 설계)

  • Park, Youn-Ok;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • In this paper, an area-efficient FFT processor is proposed for IEEE 802.16e mobile WiMax systems. The proposed scalable FFT processor can support the variable length of 128, 512, 1024 and 2048. By reducing the required number of non-trivial multipliers with mixed-radix (MR) and multi-path delay commutator (MDC) architecture, the complexity of the proposed FFT processor is dramatically decreased without sacrificing system throughput. The proposed FFT processor was designed in hardware description language (HDL) and synthesized to gate-level circuits using 0.18um CMOS standard cell library. With the proposed architecture, the gate count for the processor is 46K and the size of memory is 64Kbits, which are reduced by 16% and 27%, respectively, compared with those of the 4-channel radix-2 MDC (R2MDC) FFT processor.

Analysis of Packet Transmission Delay in the DC Power-Line Fault Management System using IEEE 802.15.4 (IEEE 802.15.4를 적용한 직류배전선로 장애관리시스템에서 패킷전송 지연시간 분석)

  • Song, Han-Chun;Hwang, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.259-264
    • /
    • 2014
  • IEEE 802.15.4 has been emerging as the popular choice for various monitoring and control applications. In this paper, a fault management system for DC power-lines has been designed using IEEE 802.15.4, in order to monitor DC power-lines in real time, and to rapidly detect faults and shut off the line where such faults occur. Numbers were allocated for each node and unslotted CSMA-CA method of IEEE 802.15.4 was used, the performance of which was analyzed by a simulation. For such purpose, a total of 60 bits of the control data consisting of 16 bits of the current, 16 bits of the amplitude, 28 bits of the terminal state data were sent out, and the packet transfer rate and the transmission delay time of the fault management system for DC power-lines were measured and analyzed. When the traffic load was 330 packets per second or lower, the average delay time was shown to be shorter than 0.02 seconds, and when the traffic load was 260 packets per second or lower, the packet transfer rate was shown to be 99.99% or higher. Therefore, it was confirmed that the stringent condition of US Department of Energy (DOE) could be satisfied if the traffic load was 260 packets per second or lower, The results of this study can be utilized as basic data for the establishment of the fault management system for DC power-lines using IEEE 802.15.4.

Throughput Analysis of the IEEE 802.11g DCF with ERP-OFDM Parameters (IEEE 802.11g ERP-OFDM 파라미터 기준 DCF 처리율 분석)

  • Kang, Koo-Hong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.1-11
    • /
    • 2011
  • A lot of works on the throughput analysis of the IEEE 802.11 DCF have been studied since last few years. However, we should predict the throughput of the IEEE 802.11g that we mostly use today because the existing numerical results do not consider exactly the IEEE 802.11g with the physical layer ERP-OFDM parameters. In particular, we might have different results in the working WLAN s compared with the simple predictions of the throughput using the previous results. In this paper, we directly monitor the ERP-OFDM physical layer parameters on the operating WLANs, and then analyze the saturated DCF throughput with the well-known analytic model. Moreover, we measure the bandwidth utilization on the real WLANs working with FTP services, and then compare them with the analytic results. According to the experiment results, we confirm the usefulness of the analytic models which assume the saturated traffic sources.