• Title/Summary/Keyword: 802.11ac

Search Result 56, Processing Time 0.035 seconds

5세대 무선 LAN 기술 연구

  • Kwon, Oh-Hun;Kim, Yeo-Gyeom;Lee, Myoung-Hun;Kim, Hak-Beom
    • Review of KIISC
    • /
    • v.22 no.5
    • /
    • pp.79-89
    • /
    • 2012
  • 최근 스마트폰 2000만 시대가 열리면서 무선 데이터 트래픽이 폭증하고 있다. 이동통신사들은 LTE 구축과 함께 네트워크 가상화 기술도입에 나섰고 기업들 역시 한 단계 진화된 무선 LAN 도입을 서두르고 있다. 이러한 무선 LAN을 이용한 스마트폰 수요 및 태블릿 PC 가 폭발적으로 증가함에 따라 무선 LAN에 기반한 새로운 기술들이 활발히 논의되고 있다. 현재 사용자들이 가장 많이 사용하고 있는 802.11n의 후속으로, 차세대 스마트폰을 위한 핵심 기술로서 고용량 데이터 및 동영상을 보낼 수 있는 Gbps급 전송을 지원하는 IEEE 802.11 ac, IEEE 802.11 ad가 연구 중이다. 또한 광역 서비스를 지원하는 IEEE 802.11 af 및 IEEE 802.11 ah, 인증서비스를 간소화하여 초기링크 셋업시간을 감소시켜주는 IEEE 802.11 ai에 대해 본 논문에서는 무선 LAN 그룹의 연구와 분석에 대해 기술하고자 한다.

Design and Performance Analysis of RSRR Scheduling Algorithm for Enhancing Performance of IEEE 802.11s MCCA (IEEE 802.11s MCCA 의 성능 향상을 위한 RSRR 스케쥴링 알고리즘 설계 및 성능 분석)

  • Kim, Bong Gyu;Jung, Whoi Jin;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.22-33
    • /
    • 2014
  • As a standard of WMNs, IEEE 802.11s supports two kinds of MAC algorithm: a mandatory EDCA used by IEEE 802.11e and an optional MCCA. While EDCA classifies traffic according to four Access Categories (AC) and offer differentiated service using a classified priority, MCCA can guarantee the specific bandwidth of users with a TDMA-style bandwidth reservation scheme between mesh routers. In case that a flow is VBR traffic of a multimedia application, MCCA has disadvantage that the reserved bandwidth does not be used entirely, though it guarantees required bandwidth of users and fairness using bandwidth reservation with neighbors' node. In this paper, we showed a problem that is wastes the reserved bandwidth when MCCA is enabled and proposed a new scheduling algorithm to prevent waste of bandwidth and to improve network utilization effectively, named Resource Sharing Round Robin (RSRR) scheduling. Finally we showed simulation results that performance of a proposed RSRR is better than the legacy MCCA through NS-2 simulation.

A Cross-Layer based Video Transmission Scheme using Efficient Bandwidth Estimation in IEEE 802.11e EDCA (IEEE 802.11e EDCA에서 효율적인 대역폭 측정을 통한 Cross-Layer 기반의 비디오 전송 기법)

  • Shin, Pil-Gyu;Lee, Sun-Hun;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2008
  • Promoting quality of streaming service in wireless networks has attracted intensive research over the years. Instable wireless channel condition causes high transmission delay and packet loss, due to fading and interference. Therefore, they lead to degrade quality of video streaming service. The IEEE 802.11 Working Group is currently working on a new standard called IEEE 802.11e to support quality of service in WLANs. And several schemes were proposed in order to guarantee QoS. However, they are not adaptable to network condition. Accordingly, they suffered video quality degradation, due to buffer overflow or packet loss. In this paper, to promote quality of video streaming service in WLANs, we propose a cross-layer architecture based on IEEE 802.11e EDCA model. Our cross-layer architecture provides differentiated transmission mechanism of IEEE 802.11e EDCA based on priority of MPEG-4 video frames and adaptively controls the transmission rate by dropping video frames through the efficient bandwidth estimation based on distinction of each AC. Through the simulation, proposed scheme is shown to be able to improve end-to-end qualify for video streaming service in WLANs.

A Same-Priority Collision-Avoidance Algorithm Using RTS/CTS Frame in IEEE 802.11e EDCA under Network Congested Condition (IEEE 802.11e EDCA 네트워크 혼잡 환경에서 RTS/CTS 프레임을 이용한 동일 우선순위 충돌 회피 알고리즘)

  • Kwon, YongHo;Rhee, Byung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.5
    • /
    • pp.425-432
    • /
    • 2014
  • The Enhanced Distributed Channel Access (EDCA) function of IEEE 802.11e standard defines contention window (CW) for different Access Category (AC) limits to support Quality-of-Service (QoS). However, it have been remained the problem that the collision probability of transmission is increasing in congested network. Several different solutions have been proposed but the collision occurs among same priority queue within the same station to compete the channel access. This paper presents an APCA (Advanced Priority Collision Avoidance) algorithm for EDCA that increases the throughput in saturated situation. The proposed algorithm use reserved field's bits of FC(Frame Control) using IEEE 802.11e standard's RTS/CTS (Request to Send / Clear to Send) mechanism to avoid data collision. The simulation results show that the proposed algorithm improves the performance of EDCA in packet loss. Using Jain's fairness index formula, we also prove that the proposed APCA algorithm achieves the better fairness than EDCA method under network congested condition.

Improvement of IEEE 802.11e to decrease the packet drop when happens handoff in Cellular IP network (Cellular IP network 망에서 handoff 성능 향상을 위한 IEEE 802.11e의 개선방안)

  • Yang Soon Yeal;Kim Ki Chun;Yoo Seung Wha;Roh Byeong Bee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.765-768
    • /
    • 2004
  • IEEE 802.110e는 실시간 트래픽의 QoS를 보장하기 위해 제안되었으나 cellular ip network 망에서 발생하는 route update packet과 같은 signaling traffic에 대해서는 아무런 언급을 하고 있지 않다. 따라서 본 논문에서는 IEEE 802.11e draft가 제안하고 있는 4가지의 AC(Access Category)에 따라 signaling traffic 에 대해서도 높은 우선 순위를 할당 함으로서 handoff시 발생하는 packet drop 이 얼마 만큼 줄어드는지를 분석하였다.

  • PDF

Development of a Remote Operation System for a Quay Crane Simulator (안벽크레인 시뮬레이터 원격운전 시스템 개발)

  • Kang, Seongho;Lee, Sanggin;Choo, Young-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.385-390
    • /
    • 2015
  • Quay cranes are considered core equipment for container terminal operation. However, unmanned operation systems have not as yet been announced due to the technological difficulties of implementation. In this paper, we developed a wireless controller to control a quay crane simulator remotely and conducted its performance test, a first step toward unmanned operation of quay cranes. The communication delay of a developed wireless controller was about 9.4ms on average while that of existing wired controllers was about 5.6ms. The same functions were implemented and tested on a smart phone where the average communication delay was 7.3ms. In addition, to apply the developed system into a real environment, we proposed a network architecture based on IEEE 802.11ac and carried out its performance evaluation. When the distance between two nodes was 50m apart, the throughputs of the TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) were 57Mbps and 189Mbps, respectively. The communication delay of the control data was 9.1ms through the TCP channel. These results reveal the proper working of remote quay crane operation if we adopt the IEEE 802.11ac network.

차세대 WLAN 시스템의 기술 개발 및 시장 동향

  • Park, Sang-Hun;Lee, Han-Rim;Kim, Gi-Jin;Im, Tae-Ho;An, Gwang-Ho
    • Information and Communications Magazine
    • /
    • v.28 no.11
    • /
    • pp.56-65
    • /
    • 2011
  • 가정, 기업, 오피스 및 공공장소에서의 폭넓은 무선 데이터 서비스 사용에 따라 거대한 영향력과 시장성을 갖게 될 차세대 WLAN 기술 및 시스템에 대한 관심이 더욱 높아지고 있다. 본고에서는 IEEE 802.11의 표준 기술 및 표준화 진행 중인 개발 기술들에 대해 살펴본다. WLAN을 기반으로 하는 IEEE 802.11의 간략한 history와 배경뿐만 아니라, IEEE 802.11a/b/g/n/ac/ad 등의 기술적인 부분을 요약하여 개발 현황을 알아보고, 확보된 기술을 통한 시장 상태와 차세대 기술개발을 통한 시장동향을 논의한다.

Design and Implementation of Multi-channel FFT Processor for MIMO Systems (MIMO 시스템을 위한 다채널 FFT 프로세서의 설계 및 구현)

  • Jung, Yongchul;Cho, Jaechan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.659-665
    • /
    • 2017
  • In this paper, a low complexity fast Fourier transform(FFT) processor is proposed for multiple input multiple output(MIMO) systems. The IEEE 802.11ac standard has been adopted along with the demand for a system capable of high channel capacity and Gbps transmission in order to utilize various multimedia services using a wireless LAN. The proposed scalable FFT processor can support the variable length of 64, 128, 256, and 512 for 8x8 antenna configuration as specified in IEEE 802.11ac standard with MIMO-OFDM scheme. By reducing the required number of non-trivial multipliers with mixed-radix(MR) and multipath delay commutator(MDC) architecture, the complexity of the proposed FFT processor was dramatically decreased. Implementation results show that the proposed FFT processor can reduced the logic gate count by 50%, compared with the radix-2 SDF FFT processor. Also, compared with the 8-channel MR-2/2/2/4/2/4/2 MDC processor and 8-channel MR-2/2/2/8/8 MDC processor, it is shown that the gate count is reduced by 18% and 17% respectively.

Resource Allocation Algorithm for Throughput Enhancement in IEEE 802.11e (IEEE 802.11e의 전송률 향상을 위한 자원할당 알고리듬)

  • Joung, Soo-Kyoung;Park, In-Kap
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.63-70
    • /
    • 2010
  • In IEEE 802.11e system providing differentiated services, there exist some problems as follows; collision probability increase due to the increase in the number of nodes by employing CSMA/CA transmission mode, transmission speed declining tendency towards the worst of it, which is caused by different transmission mode and decrease of TCP transmission rate as the result of the link occupancy by UDP when TCP shares the link with UDP by the TCP’s flow control characteristic. In this thesis, the initial minimum and maximum CW are set differently according to the number of connected nodes in the network to avoid collisions and TXOP is adjusted according to the channel state, in which ACs with low priority but better channel state will get gradually more chances to transmit leading to optimal channel capacity. Also, by allowing higher priority for ACK frames which control the TCP transmission, the flow control becomes better because that reduces the channel occupancy by UDP flow, and by this, fair transmission is obtained from the result of the more fair transmission and active resource allocation.

Capacity Analysis of Internet Protocol Television (IPTV) over IEEE 802.11ac Wireless Local Area Networks (WLANs)

  • Virdi, Chander Kant;Shah, Zawar;Levula, Andrew;Ullah, Imdad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.327-333
    • /
    • 2022
  • Internet Protocol Television (IPTV) has emerged as a personal entertainment source for home users. Streaming IPTV content over a wireless medium with good Quality of Service (QoS) can be a challenging task as IPTV content requires more bandwidth and Wireless Local Area Networks (WLANs) are susceptible to packet loss, delay and jitter. This research presents the capacity of IPTV using User Datagram Protocol (UDP) and TCP Friendly Rate Control (TFRC) over IEEE 802.11ac WLANs in good and bad network conditions. Experimental results show that in good network conditions, UDP and TFRC could accommodate a maximum of 78 and 75 Standard Definition Television (SDTV) users, respectively. In contrast, 15 and 11 High-Definition Television (HDTV) users were supported by UDP and TFRC, respectively. Performance of UDP and TFRC was identical in bad network conditions and same number of SDTV and HDTV users were supported by TFRC and UDP. With background Transmission Control Protocol (TCP) traffic, both UDP and TFRC can support nearly the same number of SDTV users. It was found that TFRC can co-exist fairly with TCP by giving more throughput to TCP unlike UDP.