• 제목/요약/키워드: 800MPa

Search Result 200, Processing Time 0.019 seconds

Thermal properties of silica fume-SiO2 based porous ceramic fabricated by using foaming method (직접 발포법을 이용해 제조된 실리카 흄-SiO2계 다공성 세라믹의 열적 특성)

  • Ha, Taewan;Kang, Seunggu;Kim, Kangduk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.182-189
    • /
    • 2021
  • Porous ceramics were manufactured using the foaming method for the development of inorganic insulating materials. Silica fume and SiO2 were used as main raw materials, and bentonite was used as a rapid setting agent for uniform structure formation of porous ceramics. The porous ceramics were sintered at 1200℃, and porosity, density, compressive strength, microstructure and thermal conductivity were analyzed. As the content of silica fume to SiO2 of the porous ceramics increased 70 to 90 %, the specific gravity increased from 0.63 to 0.69, and the compressive strength increased from 9.41 Mpa to 12.86 Mpa. But, the porosity showed a tendency to decrease from 72.07 % to 70.82 %, contrary to the specific gravity. As a result of measuring the thermal conductivity, the porous ceramic with a silica fume content of 70 % showed a thermal conductivity of 0.75 to 0.72 W/m·K at 25 to 800℃, respectively, and, another that a silica fume content of 90 % showed a 0.66~0.86 W/m·K. So the lower the silica f ume content, the lower the thermal conductivity, which was conf irmed to be consistent with porosity result. As a result of microstructure analysis using SEM (Scanning Electron Microscope), pores in the range of tens to hundreds ㎛ were observed inside and outside the porous ceramic, and it was confirmed that the pore distribution was relatively uniform.

Synthesis and characterization of soft magnetic composite in Fe2O3-Mg system by mechanical alloying (기계적합금화에 의한 Fe2O3-Mg계 연자성 콤포지트의 합성 및 평가)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.245-251
    • /
    • 2015
  • We have applied mechanical alloying (MA) to produce soft magnetic composite material using a mixture of elemental $Fe_2O_3$-Mg powders. An optimal milling and heat treatment conditions to obtain soft magnetic ${\alpha}$-Fe/MgO composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that ${\alpha}$-Fe/MgO composite powders in which MgO is dispersed in ${\alpha}$-Fe matrix are obtained by MA of $Fe_2O_3$ with Mg for 30 min. The saturation magnetization of ball-milled powders increases with increasing milling time and reaches to a maximum value of 69.5 emu/g after 5 h MA. The magnetic hardening due to the reduction of the ${\alpha}$-Fe grain size by MA was also observed. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at $800{\sim}1000^{\circ}C$ under 60 MPa. X-ray diffraction result shows that the average grain size of ${\alpha}$-Fe in ${\alpha}$-Fe/MgO nanocomposite sintered at $800^{\circ}C$ is in the range of 110 nm.

Flexural Test of H-Shape Members Fabricated of High-Strength Steel with Considering Local Buckling (국부좌굴을 고려한 고강도 조립 H형강 부재의 휨성능 실험)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.417-428
    • /
    • 2011
  • Depending on the plastic deformation capacity required, structural steel design under the current codes can be classified into three categories: elastic, plastic, and seismic design. Most of the current steel codes explicitly forbid the use of a steel material with a yield strength higher than 450 MPa in the plastic design because of the concerns about its low plastic deformation capacity as well as the lack of test data on local and lateral torsional buckling behavior. In this study, flexural tests on full-scale H-shape members built with SM490A (ordinary steel or benchmark material) and HSB800 (high-strength steel) were carried out. The primary objective was to investigate the appropriateness of extrapolating the local buckling criterion of the current codes, which was originally developed for normal-strength steel, to the case of high-strength steel. All the SM490A specimens performed consistently with the current code criteria and exhibited sufficient strength and ductility. The performance of the HSB800 specimens was also very satisfactory from the strength perspective; even the specimens with a noncompact and slender flange developed the plastic moment capacity. The HSB800 specimens, however, showed an inferior plastic rotation capacity due to the premature tensile fracture of the beam bottom flange beneath the vertical stiffener at the loading point. The plastic rotation capacity that was achieved was less than 3 (or the minimum level required for a plastic design). Although the test results in this study indicate that the extrapolation of the current flange local-buckling criterion to the case of high-strength steel is conservative from the elastic design perspective, further testing together with an associated analytical study is required to identify the causes of the tensile fracture and to establish a flange slenderness criterion that is more appropriate for high-strength steel.

Experimental Study of High-strength Steel CHS X-joints Under Axial Compression (지관 압축을 받는 고강도강 X형 원형강관접합부의 구조적 성능에 대한 실험적 연구)

  • Lee, Cheol Ho;Kim, Seon Hu;Chung, Dong Hyun;Kim, Dae Kyung;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.291-301
    • /
    • 2017
  • Most of current representative design standards worldwide forbid or impose restrictions on the use of high-strength steels for hollow tubular structures. The mechanical background of these limitations appears unclear and unduly conservative, and their validity needs to be re-evaluated. In this study, a total of 9 CHS(Circular Hollow Section) X-joints were tested under axial compression and analyzed to examine if the high-strength steel restrictions specified by current design standards could be relaxed. All the high-strength steel CHS X-joints tested showed satisfactory performance compared to ordinary steel joints in terms of serviceability, ultimate strength, and ductility, although the yield strength of steel was even as high as 800MPa.

Effect of Rice Straw Steaming Time and Mixing Ratio between Acacia mangium Willd Wood and Steamed Rice Straw on the Properties of the Mixed Particleboard

  • Tran, Van Chu;Le, Xuan Phuong
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • This study examined the effects of rice straw steaming time and mixing ratio between rice straw and wood particle on the properties of mixed particle board from Acacia mangium Willd wood and rice straw. Rice straw and Acacia mangium Willd wood were collected in Hanoi, Vietnam. The particle board was three-layer particle board with the structural ratio of 1:3:1. The thickness, density and board size of the particle board were 18 mm, $0.7g/cm^3$, and $800{\times}800{\times}18$ (mm, including trimming), respectively. A resin mixture between commercial Urea-formaldehyde (U-F) adhesive and methylene diphenyl isocyanate (MDI) adhesive was used with a dosage of 12% for the core layer and 14% for the surface layer. In this experimental design, the steaming time for rice straw was 15, 30, 45, 60, and 75 minutes at $100^{\circ}C$. The rice straw-wood mixing ratio was 10, 20, 30, 40, and 50%. The results showed that both mixing ratio and steaming time affect the properties of the particleboard, but the mixing ratio has a stronger impact. A higher mixing ratio and a longer steaming time resulted in a better quality of particleboard. The optimal steaming time for rice straw was 46.12 minutes with the straw-wood mixing ratio of 29.85% with the following characteristics of the particle board: the modulus of rupture (MOR) of 14.64 MPa, internal bond strength (IB) of 0.382 MPa, thickness swelling (TS) of 8.83%, and board density of $0.7-0.7g/cm^3$.

A Study on the Characteristics of Ignition and Combustion, in a Diesel Spray Using Multi-Component Mixed Fuels (다성분 혼합연료를 이용한 디젤분무의 착화연소특성에 관한 연구)

  • Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.120-127
    • /
    • 2007
  • The purpose of this study is experimentally to analyze that the fuel mass fractions of multi-component mixed fuels have an effect on the characteristics of spray ignition and combustion under the ambient conditions of diesel combustion fields. The characteristics of ignition and combustion were investigated by chemiluminescence images and direct photography. The experiments were conducted in the RCEM(rapid compression expansion machine) with optical access. Multi-component fuels mixed with i-octane, n-dodecane and n-hexadecane are injected in RCEM by the electronic control of common rail injector. Experimental conditions set up 42, 72 and 112 MPa in injection pressure, 700, 800 and 900 K in ambient gas temperature. The results show that the ignition delay was dependent on high cetane number. In case of low ambient temperature, the more low boiling point fuels were mixed, the lower luminance regime had a remarkable effect and also shortened diffusion combustion by increasing heat release rate.

Explosion Bulge Test of 800 MPa Grade Pre-Heat Free Welding Consumables (800 MPa급 무예열 용접재료의 폭파변형시험)

  • Park, Tae-Won;Song, Young-Buem;Kim, Jin-Young;Park, Chul-Kyu;Kim, Hee-Jin
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.40-40
    • /
    • 2009
  • The Cu-bearing PFS-700 steel which has yield strength over 700 MPa was developed to replace the existing submarine structural material, HY-100. PFS-700 steel has good combination of mechanical properties and superior weldability which can be welded without pre-heating before welding. Application PFS-700 steel to submarine or battle ship will give a great reduction of cost by removing or lowing pre-heating. To develop pre-heat free welding consumables that matches and take advantage of PFS-700 steel, new welding consumables have been designed for the GMAW, SAW processes and explosion bulge test(EBT) were conducted to see the reliability of welded structure. All welding was conducted without pre-heating before welding, the inter-pass temperatures were below $50^{\circ}C$ for SAW50 and $150^{\circ}C$ for GMAW and SAW150. All EBT specimens show over 14% reduction of thickness without through-thickness crack or propagation of crack to the hole-down area. Tensile properties for all welding conditions show higher(GMAW) or similar values(SAW50, SAW150) to the base metal. Charpy impact values for the weld metal also show 163.5J(GMAW), 95.4J(SAW50) and 69.0J(SAW150), which meet the goal, 50J, of this project.

  • PDF

Fabrication and Characterization of $TiB_2$-based Cermet Using SUS316L Metal Binder (SUS316L결합상을 이용한 $TiB_2$ 서멧합금의 제조와 특성평가)

  • An, Dong-Gil
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.838-844
    • /
    • 2000
  • For the fabrication of titanium diboride($TiB_2$)- based cermet as applications of cutting tools and wear resistant materials, a binder metal with good mechanical properties and sinterability is essential. In this study, SUS316L was chosen for the binder metal to obtain a new $TiB_2$ cermet with superior hardness and toughness.$TiB_2$-SUS316L cermets were densified to relative density of more than 99% by pressureless sintering at temperature above $1650^{\circ}C$ The flexural strength was up to 1290MPa at 10vo1%SUS316L cermet in spite of the formation of $Fe_2$B phase during the sintering. The fracture toughness was obtained up to $6MPam^{1/2}$ with Victors hardness over 18Gpa. These hardness and fracture toughness combinations are better than those of conventional cermet. The high temperature strength remarkably decreased by the plastic deformations of SUS316L binder phase at nearby $800^{\circ}C$ .

  • PDF

Investigation on Explosion Bulge Test Results of 800 MPa Grade Pre-heat Free Welding Consumables (800 MPa급 무예열 용접재료의 폭파변형성능에 관한 연구)

  • Park, Tae-Won;Song, Young-Beum;Kim, Jin-Young;Park, Chul-Gyu;Kim, Hee-Jin
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.80-86
    • /
    • 2009
  • The Cu-bearing PFS-700 steel which has yield strength over 700 MPa was developed to replace the existing submarine structural material, HY-100. The PFS-700 steel has a combination of good mechanical properties and superior weldability. Becaus of that, it can be welded without pre-heating. The application of PFS-700 steel to submarine or battle ship will give a great reduction of cost by omitting pre-heating or lowering pre-heat temperature. To develop pre-heating free welding consumables that match and take advantage of PFS-700 steel, new welding consumables have been designed for the GMAW, SAW processes and explosion bulge test(EBT) was conducted to see the reliability of welded structure. All welds were made without pre-heating, and the inter-pass temperature was below $50^{\circ}C$ for SAW50 and $150^{\circ}C$ for GMAW and SAW150. All EBT specimens show over 14% thickness reduction without through-thickness crack or crack propagation to the hole-down area. Tensile properties for all welding conditions show higher(GMAW) or similar values(SAW50, SAW150) to the base metal. Charpy impact values for the weld metal also show 163.5J(GMAW), 95.4J(SAW50) and 69.0J(SAW150), which meet the goal(higher than 50J) of this project.

Mechanical Properties of Zirconia Reinforced Glass-Ceramic (지르코니아 강화형 Glass-Ceramic의 기계적 성질)

  • Park, Eun-Eui;Dong, Jin-Keun;Lee, Hae-Hyoung;Song, Ki-Chang;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.3
    • /
    • pp.199-204
    • /
    • 2001
  • This study was to investigate the reused possibility of zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) with sprue button in the flexure strength and fracture toughness. 40 disk-shaped ceramic specimens (20 specimens: as-pressed material; 20 specimens: reused material) with approximately 1.7 mm thickness and 15 mm diameter were prepared by "lost wax" technique. The remnants(sprue buttons) were used for repressing. The surface treatments for the discs were gradually abraded with 320, 800, 1200, and 2000 grit SiC sandpaper. The specimens were evaluated their flexure strength with the biaxial flexure jig(ball-on-three balls) and their fracture toughness with Vickers Indentation-microfracture test. The Weibull moduli were calculated for biaxial flexural strength. The mean flexure strength and fracture toughness of each group were $122.2{\pm}18.3MPa$, $1.00{\pm}0.09MPa{\cdot}m^{0.5}$ (as-pressed ceramics), and $122.2{\pm}20.3MPa$, $1.01{\pm}0.10MPa{\cdot}m^{0.5}$ (reused ceramics). There were no significant differences in the strength and the fracture toughness between the as-pressed and the reused IPS Empress Cosmo ceramic (P>0.05). This implied zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) could be used one more time by reusing of sprue button in the flexure strength and fracture toughness.

  • PDF