• Title/Summary/Keyword: 8.2MHz

Search Result 1,178, Processing Time 0.031 seconds

A Small Broadband Antenna for Wibro/WLAN/Mobile WiMAX (Wibro/WLAN/Mobile WiMAX용 소형 광대역 안테나)

  • Ko, Jeong-Ho;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.568-575
    • /
    • 2011
  • In this paper, we propose a small broadband antenna for mobile device. The proposed antenna consists of a printed rectangular monopole antenna and a parastic element connected to ground using narrow meander line and it is designed on a FR-4 substrate that has a thickness of 0.8 mm and a dielectric constant of 4.4. The FR-4 substrate's size is 50 mm${\times}$90 mm comparable to the real mobile device. The fabricated antenna's size is 12.5 mm${\times}$10.5 mm${\times}$0.8 mm and the measurement shows -10 dB return loss bandwidth of 2,200~6,000 MHz and gains of 2.86~4.01 dBi. Accordingly, the proposed antenna can support mobile device for WiBro(2,300~2,380 MHz), WLAN(IEEE 802.11b/g/n: 2,400~2,480 MHz, IEEE 802.11a: 5,150~5,825 MHz), and mobile WiMAX(IEEE 802.16e : 2,500~2,690 MHz, 3,400~3,600 MHz) service bands.

A Study on the Technical Regulation of Weak Electric Filed Strength Radio Equipment about 8.2Hz Frequency Band (8.2MHz 대역 미약 전계강도 무선기기의 출력기준에 관한 연구)

  • Kim, Sun-Youb;Ra, Yoo-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2498-2504
    • /
    • 2009
  • This paper compared the output limit value of the Korean weak electric field strength wireless device in the 8.2MHz band with the standard values of foreign countries. Through this, the study confirmed that the Korean regulation was lower by about 10-20dB than those of the USA or Europe. In order to prove this, the study measured outputs by entrusting the 8.2MHz EAS system to two measuring companies. As a result of these measurements, electric field strengths were shown to be $70.6dB{\mu}V/m$ and $68.3dB{\mu}V/m$ respectively, and these values were confirmed to exceed the current Korean standard of $59.8dB{\mu}V/m$. Accordingly, it is deemed necessary to review the specifications of the Korean standard in the 8.2MHz band.

A study on branch type Inverted-F structure antenna with dual-band operation (듀얼밴드를 갖는 브랜치타입 인버티드 F구조 안테나에 관한 연구)

  • Park, Seong-Il;Ji, Yu-Kang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • In this parer a branch type inverted-F structure antenna with dual-band is proposed. The proposed antenna has a size of about $70mm{\times}35mm{\times}0.8mm$ with a total mobile phone PCB for support and patch of about $12mm{\times}8mm{\times}0.8mm$. This antenna is designed to operate of frequency 2.45GHz and 5.8GHz, Bandwidth at each other frequency is satisfied $83MHz{\sim}100MHz$ in frequencies. Also, The designed and fabricated dual-band antenna for 2.45GHz, 5.8GHz have a gain between 2.0dBi and -1.0dBi at all bands.

Design and Analysis on Compact Antenna for Handsets (핸드폰용 소형안테나의 설계 및 해석)

  • Choi, In-Tae;Shin, Ho-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.557-564
    • /
    • 2015
  • In this paper, the compact antenna for handsets is designed using FR-4 substrate for LTE(905-960 MHz), WCDMA(1922.8-2167.2 MHz), DCS(1710.2-1879.8 MHz), US-PCS(1850.2-1989.8 MHz), WLAN(2400-2483 MHz). The CPW line with many advantages and a spiral geometry for miniaturization is proposed. Widths of a spiral line are constant, and three stubs are added to broaden the bandwidth. Lengths and widths of three stubs are gradually changed. And proposed antenna is optimized for VSWR<3, designed, and fabricated. The dimension of this antenna is only $40{\times}30{\times}1mm3$ which is compact. It has been demonstrated by experiment that the compact planar antenna can be used as the mobile communication LTE antenna for 4G.

An 8b 200 MHz 0.18 um CMOS ADC with 500 MHz Input Bandwidth (500 MHz의 입력 대역폭을 갖는 8b 200 MHz 0.18 um CMOS A/D 변환기)

  • 조영재;배우진;박희원;김세원;이승훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.312-320
    • /
    • 2003
  • This work describes an 8b 200 MHz 0.18 urn CMOS analog-to-digital converter (ADC) based on a pipelined architecture for flat panel display applications. The proposed ABC employs an improved bootstrapping technique to obtain wider input bandwidth than the sampling tate of 200 MHz. The bootstrapuing technique improves the accuracy of the input sample-and-hold amplifier (SHA) and the fast fourier transform (FFT) analysis of the SHA outputs shows the 7.2 effective number of bits with an input sinusoidal wave frequency of 500 MHz and the sampling clock of 200 MHz at a 1.7 V supply voltage. Merged-capacitor switching (MCS) technique increases the sampling rate of the ADC by reducing the number of capacitors required in conventional ADC's by 50 % and minimizes chip area simultaneously. The simulated ADC in a 0.18 um n-well single-poly quad-metal CMOS technology shows an 8b resolution and a 73 mW power dissipation at a 200 MHz sampling clock and a 1.7 V supply voltage.

Design and Fabrication of a Quadruple Band Antenna for WLAN/WiMAX Systems (900 MHz 대역을 포함한 WLAN/WiMAX 시스템에 적용 가능한 4중대역 안테나 설계 및 제작)

  • Park, Sang-wook;Choi, Tea-Il;Choi, Young-kyu;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1240-1247
    • /
    • 2019
  • In this paper, we designed a four-band antenna that can be applied to WLAN and WiMAX systems by designing a microstrip feeding structure, four branch lines and a slit on the ground plane. The proposed antenna is designed with a size of 16.0 mm (W1) × 48.0 mm (L8) on a dielectric substrate of 18.0 mm (W) × 50.0 mm (L) × 1.0 mm(h). and a slit of 2.9 mm (W7) × 4.0 mm (L7) is inserted into the ground plane of 18.0 mm (W) × 18.7 mm (L6). Based on -10 dB production and measurement results, it obtained 60.8 MHz (8,730~9,338 MHz), 310 MHz (2.33~2.64 GHz) in the 2.4 GHz band, 420MHz (3.39~3.81 GHz) in the 3.4 GHz band, and 2,070 MHz (4.62~6.69 GHz) in the 5.0 GHz. In addition, the gain and radiation pattern characteristics of the quadrant band are measured from the measurement results anechoic chamber.

Design and Fabrication of the Frequency Multiplier for S-band Transponder (S-대역 트랜스폰더용 주파수 체배기 설계 및 제작)

  • Kim, Byung-Soo;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.348-355
    • /
    • 2006
  • In this paper, frequency multipliers used S-band transponder of the KOMPSAT 3 are designed and fabricated. In the transponder, 108 times multiplier which generate 1st LO signal(2008.8MHz) is comprised of the X9 frequency multiplier, 1st X2 multiplier, 2nd X2 multiplier and the last stage of the X3 frequency multiplier. As results, output power of 8.17 dBm at 2008.8MHz, the harmonic suppression of -56.67dBc, the bandwidth of 14MHz were measured.

  • PDF

Design of Dipole Array Antennas for PCS/IMT-2000 (PCS/IMT-2000을 위한 다이폴 배열 안테나의 설계)

  • 최학윤
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.873-881
    • /
    • 2002
  • In this paper, the rectangular reflector antenna with 8-dipole array for PCS band (1,750 MHz ~ l,870 MHz) and IMT-2000 band(1,885 MHz ~ 2,200 MHz) is designed and the radiation characteristics are analyzed using the method of moments and HFSS(High Frequency Structure Simulator). To verify the analysis results, rectangular reflector antenna with 8-dipole array is fabricated and the calculated results are compared with the measured results. The measured results show good agreement with the calculated results. As a result of measurements, bandwidth(VSWR< 1.5) of 450 MHz is achieved at PCS and IMT-2000 band and gain is 16 dBi. The designed antenna can be used as the base station antenna for PCS/IMT-2000.

A High Swing Range, High Bandwidth CMOS PGA and ADC for IF QPSK Receiver Using 1.8V Supply

  • Lee, Woo-Yol;Lim, Jong-Chul;Park, Hee-Won;Hong, Kuk-Tae;Lee, Hyeong-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.276-281
    • /
    • 2005
  • This paper presents a low voltage operating IF QPSK receiver block which is consisted of programmable gain amplifier (PGA) and analog to digital converter. This PGA has 6 bit control and 250MHz bandwidth, $0{\sim}20\;dB$ gain range. Using the proposed PGA architecture (low distortion gain control switch block), we can process the continuous fully differential $0.2{\sim}2.5Vpp$ input/output range and 44MHz carrier with 2 MHz bandwidth signal at 1.8V supply voltage. Using the sub-sampling technique (input freq. is $44{\sim}46MHz$, sampling freq. is 25MHz), we can process the IF QPSK signal ($44{\sim}46MHz$) which is the output of the 6 bit PGA. We can get the SNDR 35dB, which is the result of PGA and ADC at full gain mode. We fabricated the PGA and ADC and the digital signal processing block of the IF QPSK with the 0.18um CMOS MIM process 1.8V Supply.

Dual-Band Monopole Antenna Design with Mu-Negative Metamaterial Unit Cell (Mu-Negative Metamaterial 단일 셀을 가진 듀얼 대역 모노폴 안테나 설계)

  • Lee, Sang-Jae;Lee, Young-Hun
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.219-226
    • /
    • 2017
  • This paper was studied the double-band monopole antenna design with Mu-negative metamaterial unit cell, which operates at 700MHz and 2.45GHz band. Mu-negative unit cell made of the interdigital capacitor structure to operate a double-band antenna by inserting it into an antenna radiator unit. In addition, the parasitic conductor is implemented on the back side of the antenna radiation part, so that the resonance point of the antenna can be controlled and the bandwidth is improved. Finally, we implemented an antenna operating in the 750MHz UHD band and the 2.45GHz WiFi band. The designed antenna has a size of $200{\times}100mm^2$. Experimental results show that the 8dB bandwidth and gain characteristics at 750MHz band are 320MHz(42.7%), 5.28dB, 6dB bandwidth and gain at 2.45GH are 540MHz (21.6%), -0.46dB. From the experimental results, we confirmed that the resonance point with theoretical value is in agreement with experimental value, and the radiation patterns are have the omnidirectional characteristic in both bands.