• Title/Summary/Keyword: 8-quinone

Search Result 119, Processing Time 0.038 seconds

Analysis of Microbial Community Structure in River Ecosystem Using Quinone Profiles (Quinone profile를 이용한 하천생태계의 미생물군집구조 해석)

  • Lim, Byung-Ran;Lee, Kisay;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.685-690
    • /
    • 2006
  • The differences in microbial community structures between planktonic microorganism and biofilm in rivers were investigated using respiratory quinone profiles. The compositions of microbial quinone for 4 tributaries of the Kyongan Stream located in/flowing through Yongin City, Gyeonggi-Do were analyzed. Ubiquinone(UQ)-8, UQ-9, menaquinone(MK)-6 and Plastoquinone(PQ)-9 were observed in all samples of planktonic microorganism and biofilm for the sites investigated, Most planktonic microorganism and biofilm had UQ-8(15 to 30%) and PQ-9(over 30%) as the dominant quinone type. These results indicated that oxygenic phototrophic microbes(cyanobacteria and/or eukaryotic phytoplankton) and UQ-8 containing proteobacteria constituted major microbial populations in the river. The quinone concentration in the river waters tested, which reflects the concentration of planktonic microorganisms, increases with increasing DOC. Further research into this is required. The microbial diversities of planktonic microorganism and biofilm calculated based on the composition of all quinones were in the range from 4.2 to 7.5, which was lower than those for activated sludge(ranging from 11 to 14.8) and soils(ranging from 13.4 to 16.8). The use of quinone profile appears to be a useful tool for the analysis of microbial community structure in river.

Acaricidal Effects of Quinone and Its Congeners and Color Alteration of Dermatophagoides spp. with Quinone

  • Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1394-1398
    • /
    • 2007
  • Acaricidal activity of the active constituent derived from Pyrus ussuriensis fruits against Dermatophagoides farinae and D. pteronyssinus was examined and compared with that of the commercial benzyl benzoate. The $LD_{50}$ value of the ethyl acetate fraction obtained from the aqueous extract of P. ussuriensis fruits was 9.51 and $8.59{\mu}g/cm^3$ against D. farinae and D. pteronyssinus, respectively. The active constituent was identified as quinone by spectroscopic analyses. On the basis of $LD_{50}$ values with quinone and its congeners, the compound most toxic against D. farinae was quinone ($1.19{\mu}g/cm^3$), followed by quinaldine (1.46), benzyl benzoate (9.32), 4-quinolinol (86.55), quinine (89.16), and 2-quinolinol (91.13). Against D. pteronyssinus, these were quinone ($1.02{\mu}g/cm^3$), followed by quinaldine (1.29), benzyl benzoate (8.54), 4-quinolinol (78.63), quinine (82.33), and 2-quinolinol (86.24). These results indicate that the acaricidal activity of the aqueous extracts can be mostly attributed to quinone. Quinone was about 7.8 and 8.4 times more toxic than benzyl benzoate against D. farinae and D. pteronyssinus. Additionally, quinaldine was about 6.4 and 6.6 times more toxic than benzyl benzoate against D. farinae and D. pteronyssinus, respectively. Furthermore, the skin color of the dust mites was changed from colorless-transparent to dark brown-black by the treatment of quinone. These results indicate that quinone can be very useful as potential control agents, lead compounds, or the indicator of house dust mites.

Characterization of Microbial Community in Biological Wastewater Treatment System Using Respiratory Quinone Profiles

  • Lim Byung-Ran;Ahn Kyu-Hong;Lee Yonghun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.111-114
    • /
    • 2003
  • The dynamics of microbial community structure of the various domestic wastewater treatment processes were examined using a novel approach of quinone profiles. The compositions of microbial quinone of 5 sites fer plant and lab-scale activated sludge were analyzed. More than 14 kinds of quinones were observed in the activated sludges tested in this study. The microbial community structure of the plant activated sludge processes a little differed from that of the lab-scale submerged MBR systems. The dominant quinones were UQ-8, UQ-10 followed $MK-8(H_4)$, MK-7 and MK-6. The molar ratio of ubiquinones to menaquinones (UQ/MK) changed from 0.81 to 1.9, indicating that aerobic bacteria dominated the microbial community of the activated sludge examined. The microbial diversity of the activated sludges calculated from the all quinone compositions was 9.5-11.9 and the microbial equability of the activated sludges was 0.64-0.79.

  • PDF

PHOTOCHEMICAL FORMATION OF ISOMERIC QUINONE METHIDES FROM o-QUINONES AND ONE-WAY ISOMERIZATION

  • Kim, Ae-Rhan
    • Journal of Photoscience
    • /
    • v.4 no.2
    • /
    • pp.49-52
    • /
    • 1997
  • Irradiation (300 nm) of 1, 2-benzoquinones 1 and diphenylacetylene 2 in dichloromethane yielded two isomeric quinone methides, 6 and 7. The same types of quinone methides, 9 and 10 (or 12 and 13) were obtained from the photocycloadditions of 9, 10-phenanthrenequinone 8 (or acenaphthenequinone 11) to diphenylacetylene 2. One-way photoisomerizations were observed between each isomeric adducts, (6, 7), (9, 10) and (12, 13).

  • PDF

Induction of Quinone Reductase by Extracts of Traditional Medicinal Plants (Quinone reductase 유도활성 측정에 의한 약용식물의 항암활성 검색)

  • Jin, Hai-Hong;Kim, Dong-Man;Hyun, Chang-Kee
    • Korean Journal of Pharmacognosy
    • /
    • v.32 no.2 s.125
    • /
    • pp.168-174
    • /
    • 2001
  • Induction of phase II enzymes is a major mechanism of chemoprevention. The induction levels of quinone reductase (QR) activity in cultured murine hepatoma (Hepa 1c1c7) cells by 80%-methanol extracts of traditional medicinal plants were measured. Among the tested 81 plants, the extracts of Aralia continentalis, Magnolia obovata, and Viscum album were found to induce QR activities over 250%. The maximum induction levels obtained were 401.9%, 270.5%, and 301.8% by treatments of the extracts of A. continentalis $(318\;{\mu}g/ml)$, M. obovata $(53.8\;{\mu}g/ml)$ and V. album $(80.6\;{\mu}g/ml)$, respectively. These QR induction activities were more potent than those of the known QR inducers, t-butylhydroquinone (170.1%) and ${\beta}-naphthoflavone$ (320.0%).

  • PDF

Characterization of Water Quality and Microbial Communities in Rivers in Changwon city (창원시 하천의 수질 및 미생물상 분석)

  • Kim Sun-A;Kim Chung-Hye;Lim Byung-Ran;Cho Kwang-Hyun;Park Hee-Chang;Joo Woo Hong
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.148-155
    • /
    • 2006
  • The diversity of bacterial populations in rivers flowing through Changwon City, was investigated using quinone profiling. The physicochemical properties such as temperature, pH, dissolved oxygen(DO), dissolved organic carbon (DOC) and biochemical oxygen demand (BOD) were also measured in this study. Ubiquinone (UQ)-8, UQ-9 and UQ-10 were observed in all samples for the sites investigated. UQ-8 was the -predominant quinone species in rivers except for Namch'on downstream, T'owolch'on, and Kaumchongch'on in autumn, while UQ-8 was also found as major quinones in the sample except for Hanamch'on, T'owolch'on, Kaumchongch'on, and Namsanch'on in winter. A higher concentration of DOC in rivers yield high concentration of plastoquinone (PQ-9) in autumn and those of total quinones in winter, respectively. Correlation analysis also indicate that BOD is considered to be a major factor controlling the concentration of PQ in rivers.

Antitumor activities of Gamdutang aqua-acupuncture solution (감두탕 약침액의 암예방 효과에 관한 연구)

  • Han, Sang-Hoon;Park, In-Kyu;Moon, Jin-Young;Lim, Jong-Kook
    • Journal of Acupuncture Research
    • /
    • v.17 no.1
    • /
    • pp.129-142
    • /
    • 2000
  • Gamdutang aqua-acupuncture solution(GAS), Gamdutang water-extracted solution(GWS) and Degamdutang aqua-acupuncture solution(DGAS) were prepared and tested for potential antitumor activities. It was used three biomarkers (quinone reductase, omithine decarboxylase, glutathione) to test chemopreventive potentials of GAS, GWS, DGAS. GAS was potent inducer of quinone reductase activity in Hepalclc7 murine hepatoma cells in culture, whereas GWS is less potent. GAS, GWS and DGAS were significantly induced quinone reductase activity in cultured rat normal liver cell, Ac2F. Glutathione levels were increased about 1.8-fold with GAS, 1.0-1.1 fold with GWS, DGAS in cultured murine hepatoma hepaiclc7 cells. In addition glutathione s-transferase levels were increased with GAS, GWS and DGAS. The effects of GAS, GWS and DGAS were tested on the growth of Acanthamoeba castellanii. Proliferation of Acanthamoeba castellanii was inhibited by GAS, GWS and DGAS at concentradons of $1{\times}$ and $5{\times}$. These results suggest that GAS has chemopreventive potential by inducing quinone reductase and quinone reductase activities, inhibition of ornithine decarboxylase activity, and increasing glutathione levels.

  • PDF

Induction of Quinone Reductase and Glutathione S-Transferase in Murine Hepatoma Cells by Flavonoid Glycosides

  • Kim, Jung-Hyun;Lee, Jeong-Soon;Kim, Young-Chan;Chung, Shin-Kyo;Kwon, Chong-Suk;Kim, Young-Kyoon;Kim, Jong-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.4
    • /
    • pp.365-371
    • /
    • 2003
  • The potential of seven flavonoid glycosides to induce quinone reductase (QR), an anticarcinogenic marker enzyme, in murine hepatoma cells (hepalc1c7) and its mutant cells (BPRc1) was evaluated. Among test compounds, kaempferol-3-O-glucoside, luteolin-6-c-glucoside, and quercetin-3-O-glucoside (Q-3-G) induced QR in hepalc1c7 cells in a dose-dependent manner. However, in BPRc1 cells lacking arylhydrocarbon receptor nuclear translocator (ARNT), only Q-3-G caused a significant induction of quinone reductase at the concentration range of 0.5 to 8 ug/mL, suggesting that it is a monofunctional inducer. Q-3-G induced not only phase 2 enzymes, including QR and glutathione-S-transferase, but also nitroblue tetrazolium reduction activity in HL-60 cells, a biochemical marker for cell differentiation promoting agents. In conclusion, Q-3-G merits further study to evaluate its cancer chemopreventive potential.

Effects of 6-Arylamino-5,8-quinolinediones and 6-Chlore-7-ary-lamino-5,8-isoquinolinediones on NAD(P)H : Quinone Oxidoreductase (NQO1 ) Activity and Their Cytotoxic Potential

  • Ryu, Chung-Kyu;Jeong, Hyeh-Jean;Lee, Sang-Kook;You, Hee-Jung;Choi, Ko-Un;Shim, Ju-Yeon;Heo, Yeon-Hoi;Lee, Chong-Ock
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.390-396
    • /
    • 2001
  • Synthesized 6-arylamino-5,8-quinolinediones 4a-4j and 6-chloro-7-arylamino-5,8-isoquinolinediones 5a-5g were evaluated for effects on NAD(P)H quinone oxidoreductase (NQOl ) activity with the cytosolic fractions derived from cultured human lung cancer cells and their cytotoxicity in cultured several human solid cancer cell lines. The 5,8-quinolinediones 4 and 5,8-isoquinolinediones 5 affected the reduction potential by NQO1 activity and showed a potent cytotoxic activity against human cancer cell lines. The tested compounds 4a, 5c, 5f, and 5g were considered as more potent cytotoxic agents. The compounds 4d, 5b, 5c, 5e and 5g were comparable modulators of NQO1 activity.

  • PDF

Purification and Properties of Quinone Reductase

  • Sin, Hae-Yong;Sim, Seung-Bo;Jang, Mi;Park, Jong-Ok;Kim, Gyeong-Sun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.638-639
    • /
    • 2000
  • Quinone reductase was purified to electrophoretic homogeneity from bovine liver by using ammonium sulfate fractionation, ion-exchange chromatography, and gel filtration chromatography. The enzyme utilized either NADH or NADPH as the electron donor. The optimum pH of the enzyme was pH 8.5, and the activity of the enzyme was greatly inhibited by $Cu^{2+}$ and $Hg^{2+}$ ions, dicumarol and cibacron blue 3GA. The enzyme catalyzed the reduction of several quinones and other artificial electron acceptors. Furthermore, the enzyme catalyzed NAD(P)H-dependent reduction of azobenzene or 4-nitroso-N,N-dimethylaniline. The apparent $K_m$ for 1,4-benzoquinone, azobenzene, and 4-nitroso-N,N-dimethylaniline was 1.64mM, 0.524mM and 0.225mM, respectively. The reduction of azobenzene or 4-nitroso-N,N-dimethylaniline by quinone reductase was strongly inhibited by dicumarol or cibacron blue 3GA, potent inhibitors of quinone reductase.

  • PDF