• Title/Summary/Keyword: 7S protein

Search Result 3,245, Processing Time 0.034 seconds

Selection of Forage Corn Varieties Adapted to High Latitude (The South of Mt. Suyang) (고위도 기후대 재배 적합 국산 사료용 옥수수 품종 선발)

  • Jae-Han Son;Hwan-Hee Bae;Young Sam Go;Jun-Young Ha;Bonil Ku;Man-Kee Baek;Jeong-Ju Kim;Beom-Young Son;Tae-Wook Jung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.4
    • /
    • pp.216-224
    • /
    • 2023
  • Since maize (Zea mays L.) originated in central and south America, it requires warm climate conditions throughout its growing season. Growth halts when night-time temperatures drop below 10℃, and the plant may die if temperature reach -1.7℃. Thus, temperature should be maintained between 10 and 30℃ from seeding to maturity. The germination temperature for maize should be at least 8-11℃, whit an optimal range 32-34℃. Since temperature significantly affects the germination rate and period, it plays a crucial role in maize growth. In this study, we evaluated the quantity and feed value of 11 major varieties to determine those best suited for maize cultivation as feed in higher latitude, specifically in Democratic People's of Republic of Korea, below 38 degrees north. A cultivation test was also conducted in Suwon in Republic of Korea, to assess adaptability in areas south of Mt. Suyang. Among the varieties tested, Shinhwangok2 reached silking the fastest, in 65 days, while Gwangpyeongok took the longest at 75 days. The stem length of all varieties exceeded 230 cm. Gwangpyeongok had the tallest stems, while Daanok and Shinhwangok2ho displayed the highest ear ratios. Dacheongok presented the highest values in both dry matter and TDN quantity, with 31,420 kg/ha and 21,66 kg/ha respectively. Pyeonggangok had the highest crude protein content at 8.0%. TDN (%) ranged from 57-68%, with Hwangdaok reaching up to 68%. Based on these findings, Dacheongok and Pyeonggangok appear to be the most suitable varieties for cultivation in terms of both quantity and feed value.

The Signal Transduction Mechanisms on the Intestinal Mucosa of Rat Following Irradiation (방사선조사후 백서소장점막에서 발생하는 신호전달체계에 관한 연구)

  • Yoo Jeong Hyun;Kim Sung Sook;Lee Kyung Ja;Rhee Chung Sik
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.79-95
    • /
    • 1997
  • Purpose : Phospholipase C(PLC) isozymes play significant roles in signal transduction mechanism. $PLC-\gamma$ 1 is one of the key regulatory enzymes in signal transduction for cellular proliferation and differentiation. Ras oncoprotein, EGFR, and PKC are also known to be involved in cell growth. The exact mechanisms of these signal transduction following irradiation, however, were not clearly documented Thus, this study was Planned to determine the biological significance of PLC, ras oncoprotein, EGFR, and PKC in damage and regeneration of rat intestinal mucosa following irradiation. Material and Method : Sixty Sprague-Dawley rats were irradiated to entire body with a single dose of 8Gy. The rats were divided into S groups according to the sacrifice days after irradiation. The expression of PLC, ras oncoprotein, EGFR and PKC in each group were examined by the immunoblotting and immunohistochemistry. The histopathologic findings were observed using H&I stain, and the mitoses for the evidence of regeneration were counted using the light microscopy & PCNA kit. The Phosphoinositide(PI) hydrolyzing activity assay was also done for the indirect evaluation of $PLC-\gamma$ 1 activity. Results: In the immunohistochemistry , the expression of $PLC-{\beta}$ was negative for all grøups. The expression of $PLC-{\gamma}1$ was highest in the group III followed by group II in the proliferative zone of mucosa. The expression of $PKC-{\delta}1$ was strongly positive in group 1 followed by group II in the damaged surface epithelium. The above findings were also confirttled in the immunoblotting study. In the immunoblotting study, the expressions of $PLC-{\beta}$, $PLC-{\gamma}1$, and $PKC-{\delta}1$ were the same as the results of immunohis-tochemistry. The expression of ras oncoprctein was weakly positive in groups II, III and IV. The of EGFR was the highest in the group II, III, follwed by group IV and the expression of PKC was weakly positive in the group II and III. Conclusion: $PLC-{\gamma}1$ mediated signal transduction including ras oncoprotein, EGFR, and PKC play a significant role in mucosal regeneration after irradiation. $PLC-{\delta}1$ mediated signal transduction might have an important role in mucosal damage after irradiation. Further studies will be necessary to confirm the signal transduction mediating the $PKC-{\delta}1$.

  • PDF

Effects of Dietary Salt Restriction on the Development of Renal Failure in the Excision Remnant Kidney Model (식이 sodium 제한 및 식이 sodium 제한에 따른 항고혈압제의 투여가 만성신부전증의 진행에 미치는 영향에 관한 실험적 연구)

  • Kim Kee-Hyuk;Kim Sang-Yun;Kang Yong-Joo;Maeng Won-Jae;Kim Kyo-Sun
    • Childhood Kidney Diseases
    • /
    • v.3 no.2
    • /
    • pp.170-179
    • /
    • 1999
  • Purpose: To evaluate whether or not sodium restriction had its own beneficial effect and increased the efficiency of the anti-hypertensive drugs on the progression of renal failure. Methods: We studied using the excision remnant kidney model. Treatment groups were as follows: 5/6 nephrectomy and a 0.49% (normal-high) sodium diet (NN); 5/6 nephrectomy and a 0.25% (normal-low) sodium diet (LN); 5/6 nephrectomy, a 0.49% sodium diet and enalapril (NNE); 5/6 nephrectomy, a 0.49% sodium diet and nicardipine (NNN); 5/6 nephrectomy, a 0.25% sodium diet and enalapril (LNE); 5/6 nephrectomy, a 0.25% sodium diet and nicardipine (LNN). Both diets were isocaloric and had the same content of protein, phosphorus and calcium. Proteinuria, remnant kidney weight, mesangial expansion scores, and glomerular volume were assessed. Results: Blood pressure tended to be lower in LN compared to NN (P<0.05). NN developed progressive hypertension. LNE, LU, NNE, and NNN reduced blood pressure. LNE, LNN, NNE, NNN, and LN had significantly less proteinuria than NN at 16 weeks (P<0.05). At 24 weeks, LN developed proteinuria (82 mg/day), which were lessened in LNE (54 mg/day) and not lessened in LNN (76 mg/day). Mesangial expansion scores were significantly less in LN rats compared to those in NN rats. Glomerular volumes at 24 weeks in LN rats were significantly less compared to those at 16 weeks in NN rats. Mesangial expansion scores and glomerular volumes at 4, weeks, 12 weeks, and 24 weeks were not different among LN, LNE, and LNN groups. Conclusion: Dietary salt restriction lessens renal damage, at least in part, by inhibiting compensatory renal growth and reducing blood pressure. Enalapril was particularly successful in reducing proteinuria and glomerular injury when combined with dietary salt restriction.

  • PDF

Comparative analysis of food intake according to the family type of elderly women in Seoul area (서울 일부지역 여자 노인들의 가구유형에 따른 영양소 섭취실태 및 식사의 질 평가)

  • Lee, Yeon Joo;Kwon, Min Kyung;Baek, Hee Joon;Lee, Sang Sun
    • Journal of Nutrition and Health
    • /
    • v.48 no.3
    • /
    • pp.277-288
    • /
    • 2015
  • Purpose: As the rate of senior citizens living alone increases in the current aging society, there is much concern regarding the health and nutritional intake of solitary senior citizens. Therefore, this study compared the nutritional intake of senior citizens according to their family type. Methods: In July and August of 2011, two senior citizen welfare centers in Seoul were visited to survey 267 elderly women. Excluding 54 subjects for which the data were incomplete, information from 213 subjects was analyzed. The subjects were divided into three family types, living alone (LA, n = 74), living with spouse (LS, n = 78), and living with children (LC, n = 61). Results: The mean age of the LA group was the highest, while the mean age of the LS group was the lowest (p < 0.001), and WHR of the LC group was the highest (p = 0.049). Income was the highest in the LS group (p < 0.001). Frequency of eating out was the lowest in the LA group (p = 0.031). By Duncan's multiple analysis, the amounts of energy intake, vegetable protein, fat, calcium, phosphorus, potassium, selenium, Vit D, Vit E, $Vit\;B_2$, niacin, $Vit\;B_6$, $Vit\;B_{12}$, and cholesterol were significantly higher in the LS group compared with the LA or LC group (p < 0.05). The intakes of calcium, Vit D, $Vit\;B_{12}$, and cholesterol were still significantly different among the three groups, even after adjustment for age and monthly income. The LA group ate less fruit and fish than the LS or LC group (p < 0.05). The LA group showed the lowest dietary diversity and the LS group showed the highest diversity (p = 0.014), however, the significance of dietary diversity score among the three groups disappeared after adjustment for age and monthly income. Conclusion: Elderly women living with spouse were receiving better nutrition than elderly women living alone or living with children. Therefore, solitary elderly women who do not live with their spouse or children should be offered greater opportunities to receive a balanced meal at a congregational kitchen or welfare center. To ensure their healthy diet, it is essential to provide continuous nutrition education with these groups in mind.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF