• Title/Summary/Keyword: 70 kDa protein

Search Result 203, Processing Time 0.02 seconds

Physicochemical properties and anti-wrinkle effect of polysaccharides with different molecular weights from Gloiopeltis furcata (불등풀가사리 다당류의 분자량에 따른 이화학적 품질특성 및 피부 주름 개선 효과)

  • Lee, Dae-Hoon;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.688-696
    • /
    • 2017
  • In this study, the physicochemical properties and anti-wrinkle effect of polysaccharides with different molecular weights from Gloiopeltis furcata were investigated. Crude polysaccharides were isolated by viscozyme treatment followed by ethanol precipitation and lyophilization. Crude polysaccharides were hydrolyzed by acid (0.1 N HCl) and the molecular weight fractions were generated by centrifugal filter (<10 kDa, 10 to 100 kDa, and 100 kDa>). The yield of polysaccharides with different molecular weight fractions was 8.4-39.6%. The major constituents in molecular weight fractions were total sugar (81.37-85.82%), uronic acid (27.89-32.85 g/100 g), sulfate (33.38-39.04%), and protein (0.35-3.16%) The L, a, and b value of the 100 kDa group were decreased, but viscosity increased. The oxygen radical absorbance capacity of the 100 kDa group at $180.07{\mu}M$ was the highest among groups. The protective effects of 100 kDa group at 0.5 and $5{\mu}g/mL$ against $H_2O_2$-induced cytotoxicity in L132 cell were 87.34% and 103.85%, respectively. The matrix metalloproteinase-1 activity of 100 kDa group decreased in a dose-dependent manner. The pro-collagen synthesis activity of 100 kDa group at $0.05-0.5{\mu}g/mL$ was 64.91-77.80%. The polysaccharides with different molecular weights from Gloiopeltis furcata investigated herein are useful as a potential candidate for cosmedical materials.

Detection of Fish Virus by Using Immunomagnetic Separation and Polymerase Chain Reaction (IMS-PCR)

  • KIM Soo Jin;OH Hae Keun;CHOI Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.948-955
    • /
    • 1997
  • Immunomagnetic separation of virus coupled with .reverse transcription-polymerase chain reaction (IMS-PCR) was performed with infectious hematopoietic necrosis virus (IHNV). A DNA fragment of expected size was synthesized in the RT-PCR with total RNA extracted from IHNV inoculated CHSE-214. In a SDS-PAGE analysis, a protein band of over 70kDa was detected from non-infected cells and cells inoculated with IHNV and infectious pancreatic necrosis virus (IPNV). This protein was detected in the Western blot analysis probably because of non-specific reaction to monoclonal antibody against IHNV nucleocapsid protein. In the immunomagnetic separation, magnetic beads coated with monoclonal antibody against the IHNV nucleocapsid protein was incubated with supernatant from IHNV inoculated CHSE-214 cells. During this process, the non-specifically reacting protein could be removed by washing the magnetic bead with PBS in the presence of an external magnetic field, and viral proteins were detected from the remaining, cleaned magnetic beads. It was necessary to extract viral RNA from the captured virus particles before RT-PCR, and no DNA product was detected when the captured virus was only heated 5 min at $95^{\circ}C$. A PCR-product of expected size was synthesized from IMS-PCR with magnetic beads double coated either by goat anti-mouse IgG antibody -monoclonal antibody or streptavidin - biotin conjugated monoclonal antibody.

  • PDF

Selective Gene Express Profiles in Rat Uterus during Estrus Cycle

  • Kim, Do-Rim;Yu, Seong-Jin;Kim, Jee-Yun;Youm, Mi-Young;Lee, Chae-Kwan;Kang, Sung-Goo
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.70-70
    • /
    • 2003
  • The uterus undergoes dynamic changes during the cycle and displays many features typical of developmental process. In order to be prepared for implantation, endometrium undergoes predictable, sequential phases of proliferation and secretory changes. The uterus during estrus cycle synthesize a complex of signaling molecules with specific spatial and temporal modes of expression and which are critical for cell proliferation and differentiation. The purpose of this investigation was to use cDNA microarrays to evaluate the expression of genes of rat uterus in estrus cycle. Animals were sacrificed on proestrus, estrus, metestrus, diestrus. Differential gene expression profiles were revealed(growth-related c-myc reponsive protein RCL, heat shock 47-kDa protein (HSP47), cytochrome c oxidase polypeptide Vlc2 (COX6C2), calreticulin (CALR)). Reverse transcription polymerase chain reaction (RT-PCR) was used to validate the relative expression pattern. Using this approach, we found several genes whose expression in rat uterus was altered with estrus cycle. Our long-term goal is to determine the role of these differentially expressed genes during estrus cycle. This study was supported by through the Biohealth Products Research Center(BPRC), Inje University.

  • PDF

Purification and Characterization of Two Endoxylanases from an Alkaliphilic Bacillus halodurans C-1

  • Tachaapaikoon Chakrit;Lee Yun-Sik;Rantanakhanokchai Khanok;Pinitglang Surapong;Kyu Khin Lay;Rho Min-Suk;Lee Si-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.613-618
    • /
    • 2006
  • Two endoxylanases from an alkaliphilic bacterium, Bacillus halodurans C-1, were purified 3.8- and 7.9- fold with specific activities of 9.4 and 19.8U/mg protein, respectively. The molecular masses of both purified enzymes were 23 and 47 kDa, respectively, and 23 kDa xylanase I (Xyl I) exhibited an optimum pH at 7.0, whereas 47 kDa xylanase II (Xyl II) showed a broad pH range of 5.0 to 9.0. The temperature optima of both xylanases were $60^{\circ}C\;and\;70^{\circ}C$, respectively. Both were stable in the pH range of 6.0 to 9.0 and 5.0 to 10.0, respectively, and they were stable up to $60^{\circ}C\;and\;70^{\circ}C$, respectively. The $K_m\;and\;V_{max}$ of Xyl I were 4.33mg/ml and $63.5{\mu}mol/min/mg$, respectively, whereas Xyl II had a $K_m$ value of 0.30 mg/ml and $V_{max}$ of $210{\mu}mol/min/mg$. Both xylanases hydrolyzed xylans from birchwood, oat spelt, and larchwood. However, they showed different modes of action; a series of xylooligosaccharides larger than xylotriose were released as the major products by Xyl I, whereas xylobiose and xylotriose were the main products by Xyl II. The maximum synergistic action of the two enzymes on hydrolysis of xylan was 2.16 with the ratio of Xyl I to Xyl II at 1:9.

The Fragments of Fibronectin (Fn-fr's 70, 45 kDa) Increase MMP-1 Expression and MMP-2 Activity in Normal Human Fibroblasts (사람 피부 섬유아세포에서의 파이브로넥틴 조각(70, 45 kDa)에 의한 MMP-1 발현 증가와 MMP-2 활성 증가 연구)

  • Hwang, Jae-Sung;Kim, Hyae-Kyoung;Son, Eui-Dong;Lee, Jin-Young;Kang, Hak-Hee;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.245-249
    • /
    • 2007
  • The alternation of extracellular matrix (ECM) protein in aging process is associated with symptoms such as wrinkling and loss of elasticity in skin. Now, the major target proteins for anti-aging have been metalloproteases and the structural proteins such as collagen and elastin. Recently, the interaction of cell and ECM proteins (collagen, fibrillin, and fibronectin) is reported to have an important role in survival, proliferation and tissue reconstruction. Fibronectin is a matrix adhesion protein which binds to collagen and integrin and degraded by serine proteases. It has been reported that fragments of fibronectin (Fn-fr's) were involved in matrix metalloproteases (MMPs) expression in osteoblast. But, the role of Fn-fr's in human skin and in skin cells has not been reported yet. Therefore, we investigated the differences of fibronectin fragmentation pattern between young and aged human skin, and demonstrated that the fragmentation of fibronectins is significantly increased in aged human skin. Also, treatment of Fn-fr's (70, 45 kDa) increased MMP-1 expression and MMP-2 activity in human dermal fibroblasts. Our results suggest that Fn-fr's as a potential new factor to accelerate skin aging.

Increased Expression of Phospholipase C-$\gamma1$ Activator Protein, AHNAK in Human Lung Cancer Tissues (인체 폐암조직에서 Phospholipase C-$\gamma1$의 활성화 단백, AHNAK의 발현양상)

  • Oh, Yoon-Jung;Park, Chun-Seong;Choi, So-Yeon;Cheong, Seong-Cheoll;Lee, Sun-Min;Hwang, Sung-Chul;Lee, Yi-Hyeong;Hahn, Myung-Ho;Lee, Kyi-Beom;Ryu, Han-Young;Ha, Mahn-Joon;Bae, Yoon-Su;Rhee, Seo-Goo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.3
    • /
    • pp.347-355
    • /
    • 1999
  • Background: Phospholipase C(PLC) plays a central role in cellular signal transduction and is important in cellular growth, differentiation and transformation. There are currently ten known mammalian isozymes of PLC reported to this date. Hydrolysis of phosphatidylinositol 4,5-bisphosphate($PIP_2$) by PLC produces two important second messengers, inositol 1,4,5-trisphosphate($IP_3$) and diacylglycerol. PLC-${\gamma}1$, previously, was known to be activated mainly through growth factor receptor tyrosine kinase. Other mechanisms of activating PLC-yl have been reported such as activation through tau protein in the presence of arachidonic acid in bovine brain and activation by $IP_3$, phosphatidic acid, etc. Very recently, another PLC-${\gamma}1$ activator protein such as tau has been found in bovine lung tissue, which now is considered to be AHNAK protein. But there has been no report concerning AHNAK and its associated disease to this date. In this study, we examined the expression of the PLC-${\gamma}1$ activator, AHNAK, in lung cancer specimens and their paired normal. Methods: From surgically resected human lung cancer tissues taken from twenty-eight patients and their paired normal counterparts, we evaluated expression level of AHNAK protein using immunoblot analysis of total tissue extract Immunohistochemical stain was performed with primary antibody against AHNAK protein. Results: Twenty-two among twenty-eight lung cancer tissues showed overexpression of AHNAK protein (eight of fourteen squamous cell lung cancers, all of fourteen adenocarcinomas). The resulting bands were multiple ranging from 70 to 200 kDa in molecular weight and each band was indistinct and formed a smear, reflecting mobility shift mainly due to proteolysis during extraction process. On immunohistochemistry, lung cancer tissues showed a very heavy, dense staining with anti-AHNAK protein antibody as compared to the surrounding normal lung tissue, coresponding well with the results of the western blot Conclusion: The overexpression of PLC-${\gamma}1$ activator protein, AHNAK in lung cancer may provide evidence that the AHNAK protein and PLC-${\gamma}1$ act in concerted manner in carcinogenesis.

  • PDF

Expression of the Heat Shock Proteins in HeLa and Fish CHSE-214 Cells Exposed to Heat Shock (어류 CHSE-214와 인간 HeLa 세포에서의 열충격에 의한 Heat Shock Protein의 발현)

  • 공회정;강호성김한도
    • The Korean Journal of Zoology
    • /
    • v.39 no.2
    • /
    • pp.123-131
    • /
    • 1996
  • In this study, we examined the expression of heat shock proteins (HSPs) in fish cell line CHSE-2lnl and human HeLa cells exposed to heat shock. In fish CHSE-214 cells HSP70 was the major polvpeptide induced by an elevated temperature or an amino acid analog, while in HeLa cells HSP90 as well as HSP70 were prominently enhanced in response to these stresses. Pretreatment of actinomvcin D prior to heat shock completely inhibited the induction of fish HSP70, indicating the transcriptional regulation of fish HSP70 gene expression. In HeLa and CHSE-214 cells either recovering from heat shock or experiencing prolonged heat shock, attenuation in the HSP90 a'nd HSP70 induction occurred but both induction and repression of HSP70 synthesis appear 19 precede those of HSP90. Moreover, attenuation did not occur in the syntheses of 40 kDa and 42 kOto proteins which were only induced in CHSE-214 cells. The enhanced syntheses of these he proteins continued as long as CHSE-214 cells were Siven heat shock. These results suggest that down-regulation of HSP syntheses during prolonged heat shock may be controlled by several different. as vet undefined, mechanisms.

  • PDF

Characterization of α-agarase from Alteromonas sp. SH-1 (Alteromonas sp. SH-1균 유래의 α-agarase의 특성조사)

  • Lee, Sol-Ji;Shin, Da-Young;Kim, Jae-Deog;Lee, Dong-Geun;Lee, Sang-Hyeon
    • KSBB Journal
    • /
    • v.31 no.2
    • /
    • pp.113-119
    • /
    • 2016
  • A novel agar-degrading marine bacterium, SH-1 strain, was isolated from seashore of Namhae at Gyeongnam province, Korea. The SH-1 strain exhibited 98% similarity with Alteromonas species based on 16S rDNA sequencing and named as Alteromonas sp. SH-1. Alteromonas sp. SH-1 showed agarase activity of 348.3 U/L (1.67 U/mg protein). The molecular masses of the enzymes were predicted as about 85 kDa and 110 kDa by SDS-PAGE and zymogram. The enzymatic activity was optimal at $30^{\circ}C$ and the relative agarase activity was decreased as temperature increase from $30^{\circ}C$ and thus about 90% and 70% activities were shown at $40^{\circ}C$ and $50^{\circ}C$, respectively. The optimum pH was 6.0 for agarase activity in 20 mM Tris-HCl buffer and activities were less than 70% and 85% activity at pH 5.0 and pH 7.0, respectively, compared with that at pH 6. Agarase activity has remained over 90% at $20^{\circ}C$ after 1.5 hour exposure at this temperature. However, its activity was less than 60% at $30^{\circ}C$ after 0.5 h exposure at this temperature. The enzymes produced agarooligosaccharides such as agaropentaose and agarotriose from agarose, indicating that the agarases are ${\alpha}$-agarases. Thus, Alteromonas sp. SH-1 and its agarases would be useful for the industrial production of agarooligosaccharides which are known as having anticancer and antioxidation activities.

Purification and Characterization of a Tetrachloroethylene (PCE) Dehalogenase from Clostridium bifermentans DPH-1 (C. bifermentans DPH-1 균주로부터 정제한 테트라클로로에틸렌 (PCE) 분해효소의 제성질)

  • Chang, Young-Cheol;Jeong, Kweon;Yoo, Young-Sik;Kim, Min-Young;Shin, Jae-Young
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.14-21
    • /
    • 2000
  • DEAE-Toyopearl 650S, Superdex pg-75, Poros HQ, Superdex H200의 각종 칼러크로마토그래피를 이용하여 C.bifermentans DPH-1균주로부터 테트라클로로에틸렌(PCE) 분해 효소를 정제했다. 이 PCE 분해효소 (PCE dehalogenase)는 PCE를 환원적 탈염소화 반응에 의해 시스디클로로에딜렌 (cis-1,2-dichloroethylene)에 전환 가능하여, 이 때의 Vmax 및 Km 치는 각각 73 nmol/h.mg protein, 12$\mu$M이었다. 본 PCE dehalogenase의 겔여과 분자량 Maker Kit를 이용한 분석결과(70kDa)는 SDS-PAGE에 나타난 분자량(35kDa)의 약 2배인 것으로 확인되었다. 따라서 본 효소는 분자량 70kDa의 이량체(Homo dimer)인 것으로 추정되었다. 본 효소의 최적온도 및 pH는 각각 35$^{\circ}C$ 및 8.0 이었다. 또한 본 효소는 PCE외의 트리클로로에틸렌, 디클로로에틸렌 이성체, 1,2-디클로로에템, 1,2-디클로로프로판, 1,1,2-트리클로로에탄에 대하여도 활성을 타나내었다. N-말단 아미노산 분석결과에서도 본 효소는 현재 알려진 PCE dehalogenase와 그 배열이 전혀 다른 것으로 나타나 각종 유기염소 화합물의 분해능을 보유한 신종의 PCE 분해효소인 것이 확인되었다.

  • PDF

Characterization of an Apple Polygalacturonase-Inhibiting Protein (PGIP) That Specifically Inhibits an Endopolygalacturonase (PG) Purified from Apple Fruits Infected with Botryosphaeria dothidea

  • Lee Dong-Hoon;Bae Han-Hong;Kang In-Kyu;Byun Jae-Kyun;Kang Sang-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1192-1200
    • /
    • 2006
  • An apple polygalacturonase-inhibiting protein (PGIP), which specifically inhibits endopolygalacturonase (PG, EC 3.2.1.15) from Botryosphaeria dothidea, was purified from Botryosphaeria dothidea-infected apple (Malus domestica cv. Fuji) fruits. The purified apple PGIP had a molecular mass of 40 kDa. The N-terminal amino acid sequence of the purified protein showed high homologies to those of PGIP from pear (100%), tomato (70%), and bean (65%). We also purified polygalacturonase (PG) from B. dothidea. The PG hydrolyzes pectic components of plant cell walls. When the extracted apple pectic cell wall material was treated with purified apple PGIP and B. dothidea PG, the amount of uronic acid released was lower than that treated with B. dothidea PG alone. This result demonstrates that PGIP functions specifically by inhibiting cell wall maceration of B. dothidea PG Furthermore, we characterized the de novo function of the PGIP against PG on the solubilization and depolymerization of polyuronides from cell wall of apple fruits inoculated with B. dothidea. This result demonstrated that the PGIP of plants exhibits one of the direct defense mechanisms against pathogen attack by inhibiting PGs that are released from pathogens for hydrolysis of cell wall components of plants.