• Title/Summary/Keyword: 7-ethoxycoumarin-O-deethylase

Search Result 7, Processing Time 0.02 seconds

Effects of Betaine on the $CCI_4$-Induced Toxicity in Primary Cultured Rat Hepatocytes (일차 배양한 흰쥐의 간세포에서 사염화탄소로 인한 독성에 미치는 비테인의 효과)

  • Kim, Sun-Yeou;Kim, Hong-Pyo;Lee, Mi-Kyeong;Kim, Seung-Hee;Moon, Aree;Han, Hyung-Mi;Huh, Hoon;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.37 no.5
    • /
    • pp.499-503
    • /
    • 1993
  • Betaine, a major component of Lycii Fructus, was evaluated for its anti-hepatotoxic activity on carbon tetrachloride-induced hepatotoxicity in primary cultured rat hepatocytes. Betaine was found to attenuate carbon tetrachloride-induced hepatotoxicity both morphologically and biochemically. Typical hepatocyte necrosis due to carbon tetrachloride seemed to be reduced by 50 to 500 $\mu{M}$ of betaine under microscopical observation. The value of glutamic pyruvic transaminase released from the hepatocytes into the medium significantly decreased as betaine concentration increased. Betaine also significantly elevated the reduced activities of some enzymes, cytochrome P-450, 7-ethoxycoumarin-0-deethylase and glutathione-S-transferase, involved in xenobiotic metabolism due to carbon tetrachloride-induced hepatotoxicity. These results demonstrate a possible hepato-protective role of betaine against fatty liver that could be easily induced by carbon tetrachloride.

  • PDF

The Effect of Betaine on the $CCI_4$-Induced Hepatotoxicity in Rats (사염화탄소에 의하여 유발된 흰쥐의 간 독성에 미치는 비테인의 효과)

  • Kim, Sun-Yeou;Kim, Hong-Pyo;Lee, Mi-Kyeong;Byun, Soon-Jeong;Kim, Seung-Hee;Moon, Aree;Han, Hyung-Mi;Huh, Hoon;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.37 no.5
    • /
    • pp.538-543
    • /
    • 1993
  • Effects of betaine, a major component of Lycii Fructus, on carbon tetrachloride intoxicated rats were evaluated. Histological studies showed that betaine had improved the typical necrosis around centrilobular area in liver tissue due to the carbon tetrachloride intoxication. Betaine, whether it was administrated simultaneously or prior to carbon tetrachloride, prevented or retarded the elevation of liver-weight/body-weight ratio due to the carbon tetrachloride intoxication. Betaine also significantly elevated the reduced activities of some enzymes, cytochrome P-450, 7-ethoxycoumarin-0-deethylase and glutathione-S-transferase, involved in xenobiotic metabolism due to carbon tetrachloride intoxication. These results demonstrate a possible hepato-protective role of betaine against fatty liver that could be easily induced by carbon tetrachloride in rat.

  • PDF

In Vitro Enhancement of Microsomal Cytochrome P450-Dependent Monooxygenases by Organic Solvents in Rat Liver

  • Lee, Dong-Wook;Lim, Heung-Bin;Moon, Ja-Young;Park, Ki-Hyun
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.391-398
    • /
    • 1998
  • In vitro effects of acetone, methanol, and dimethylsulfoxide (DMSO) on liver microsomal cytochrome P450 (P450) content, and P450-dependent arylhydrocarbon hydroxylase (AHH) and 7-ethoxycoumarin O-deethylase (ECOD) activities were studied in rats. Acetone at 1% (v/v) enhanced the content ofP450, assayed spectrally in 3-methylcholanethrene (MC)- and ${\beta}-naphthoflavone$ (BNF)-inducible microsomes by 18 and 7%, respectively. Methanol, up to 5% (v/v) applied, also showed enhancement effects on P450 content in liver microsomes from rats treated with phenobarbital (PB), MC, and BNF, as well as uninduced microsomes with similar but low strength. DMSO, however, did not show such enhancing effects at the ranges of the concentrations applied. AHH and ECOD activities in MC-inducible microsomes were also enhanced by acetone at 1%, which was in proportion to the increase in P450 content by the same concentration. However, the P450 content, and AHH and ECOD activities, were decreased by increasing the concentration of acetone. Methanol at the same concentration with acetone also enhanced ECOD activity but not AHH activity in MCinducible microsomes. The enhancing effect of acetone on the enzymes was negligible when the microsomes were pretreated with a specific monoclonal antibody of MC-inducible isozyme. The difference in the effects of these solvents on P450 system might be due to their different properties that cause the P450 active site to be exposed in milieu.

  • PDF

Comparison of Characteristics of Hepatic Microsomal Cytochrome P45O-dependent Monooxygenases from Snake and Rat (꽃뱀과 흰쥐의 간 마이크로좀에 존재하는 Cytochrome P45O 의존성 Monooxygenases의 특성 비교)

  • Ja Young Moon;Dong Wook Lee;Ki Hyun Park
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.695-701
    • /
    • 1998
  • This study was carried out to investigate levels of the components of microsomal mixed function oxidase (MFO) system and activities of the hepatic microsomal cytochrome P45O (P45O)-dependent monooxygenases of grass snake (Natrix tigrina Lateralis) and to compare with those of rat. The levels of P45O and cytochrome b$_{5}$, (b$_{5}$) of snake were much lower than those in rat. NADPH-cytochrome c reductase activity in the snake was also only 40% of that in the rat. Activities of 7-ethoxycoumarin 0-deethylase (ECOD) and benzphetamine N-demethylase (BPDM) of snake hepatic microsomes, when compared with those of rat, were markedly low. But, aryl hydrocarbon hydroxylase (AHH) and testosterone hydroxylase (TSH) activities were nearly the same or higher than those of the rat. Of the P45O-dependent TSHs measured, 7$\alpha$-hydroxylase activity was the highest in snake, whereas, 6$\beta$-hydroxylase activity was the highest in rat. However, stereoselectivity of the enzyme from the snake to C2 and C6 positions of testoste-rone was the same as rat. The result of radioimmunoassay (RIA) for the identification of five P45O isozymes with MAbs shows that relatively high content of ethanol-inducible P45O isozyme, CYP2El, exists in the rat, whereas MC-inducible P45O isozyme, CYP2A1/1A2, does in the snake. From the analyses of SDS-PAGE and RIA of partially pu-rified P45O, we suggest the possibility of the presence of a certain P45O isozyme(s) in hepatic microsomes of snake different from those of rat.

  • PDF

Differential Effects of Indole, Indole-3-carbinol and Benzofuran on Several Microsomal and Cytosolic Enzyme Activities in Mouse Liver (Indole, Indole-3-calbinol 및 Benzofuran이 간장 microsome과 cytosol의 약물대사 효소 활성도에 미치는 영향)

  • Cha, Young-Nam;Thompson, David C.;Heine, Henry S.;Chung, Jin-Ho
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 1985
  • The effects of feeding indole, indole-3-carbinol and benzofuran (all at 5 mmole/kg body wt./day) on various hepatic microsomal and cytosolic enzyme activities involved in xenobiotic metabolism have been compared. Benzofuran was found to elevate the activities of many enzymes both in microsomes (e.g., aniline hydroxylase, 7-ethoxycoumarin O-deethylase, p-nitrophenol UDPGA-transferase and epoxide hydrolase) and in cytosol (e.g., glutathione reductase, glutathione S-transferase, NADH:quinone reductase and UDP-glucose dehydrogenase). The structures of indole and indole-3-carbinol are similar to benzofuran except for the substitution of nitrogen with oxygen atom within the furan ring. Results showed that the activities of UDPGA-transferase and NADH:quinone reductase were not elevated by these indole compounds. While the chemical structure of these two indole compounds are identical except for the presence of the carbinol (methanol) group in indole-3-carbinol, there were marked differences in the types and activities of microsomal enzymes that were enhanced. Among the microsomal enzyme activities determined, indole elevated only the NADPH:cytochrome c reductase, while indole-3-carbinol increased several mixed function oxidase and particularly the epoxide hydrolase activities. Based on the chemical structures of tested compounds and the observed results, possible explanations for the mechanisms involved in elevating epoxide hydrolase activity by benzofuran and indole-3-carbinol are discussed.

  • PDF

Effect of Cigarette Smoke Exposure on MPTP Metabolism in the Liver of Mice

  • Heung Bin Lim;Ja Young Moon;Hyung Ok Sohn;Young Gu Lee;Dong Wook Lee
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.99-107
    • /
    • 1998
  • Numerous studies have demonstrated a negative association between cigarette smoking and Parkinson's disease. The present study was undertaken to investigate whether chronic exposure of mice to cigarette smoke a(footed the metabolism of 1-methyl-1113,6-tetrahydro-pyridine (MPTP) by cytochrome P4SO (P-450) or flavin-containing monooxygenase (FMO) in the hepatic microsomes of C57BL6/J mice. Adult male C57BL6/J mice were exposed to mainstream smoke generated from 15 cigarettes for 10 min a day and 5 day per week for 6 weeks. MPTP (10 mg/kg body weight) was administered to mice by subcutaneous injection for 6 consecutive days. Microsolnal P-450 content was increased by MPTP, smoke exposure, or both, but NADPH cytochrome P-450 reductase activity was rather decreased by the same treatments. The activities of benzo(a)pyrene hydroxylase, 7-ethoxycoumarin O-deethylase and ethoxyresorufin O-deethylase were significantly increased by the exposure of cigarette smoke, but were not or little affected by MPTP treatment. Benzphetamine N-demethylase activity was not affected either by MPTP treatment or by cigarette smoke exposure, but it was significantly increased by the combined MPTP treatment with cigarette smoke exposure, showing their synergic effect for the induction of the enzyme activity. Interestingly, in vitro studies of hepatic FMO and P-450 system both O-oxygenation and N-demethylation of MPTP were increased in the smoke-exposed or in the MPTP-treated mice. These results suggest that the enhancement in the N-demethylation as well as O-deethylation of P-450 system and in the N-oxygenation of FMO activity by cigarette smoke exposure in mouse liver may contribute to attenuating the neurotoxic effects of MPTP on the nigrostriatal dopaminergic neurons.

  • PDF

Preventive Effects of Chitosan on the Disorders of Hepatic Functions and Lipid Metabolism in Rats Treated with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) (다이옥신계 TCDD (2, 3, 7, 8-tetrachlorodibenzo-p-dioxin)에 노출된 흰쥐의 지질대사 및 간 독성물질대사에 관한 키토산의 예방효과)

  • Lee Joon-Ho;Hwang Seok-Youn;Lee Yeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.38 no.9
    • /
    • pp.689-697
    • /
    • 2005
  • This study was conducted to fine out the preventive effects of chitosan and chitosan oligomer on the disorders of hepatic functions and lipid metabolism induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) using adult male rats (SD) for four weeks. Rats were fed chitosan ($4\%$) or chitosan oligomer ($4\%$) diets respectively before 3weeks of TCDD treatment (50 ug/kg BW) by intraperitoneal injection and then continually supplied these diets for one week until being sacrificed. The elevation of serum total and LDL cholesterol levels induced by TCDD treatment was significantly reduced in the rats fed chitosan diets. The increment of liver triglyceride levels caused by TCDD treatment was tended to suppress in all rats fed chitosan and chitosan oligomer diets. Fecal total lipid and cholesterol excretion were high levels in the rats fed chitosan diets. The hepatic cytosolic catalase activities significantly decreased by TCDD treatment appeared recovering trend by chitosan diets. In hepatic microsomal cytochrome p-450, NADPH cytochrome p-450 reductase, ethoxycoumarin-o-deethylase (ECOD) and benzphetamin N-demethylase (BPND) chitosan than chitosan oligomer diets apparently decreased the increasing levels by TCDD treatment. In histochemical observation the fat droplets and apoptosis of hepatocytes by TCDD treatment were markedly alleviated by chitosan and chitosan oligomer diets. These results indicate that chitosan, more than chitosan oligomer can exert preventive effects on some disorders of hepatic functions and lipids accumulation by TCDD.