• Title/Summary/Keyword: 6-DOF motion

Search Result 220, Processing Time 0.031 seconds

Development of a parallel link typed wrist for robotic precision assembly (정밀조립을 위한 병렬다관절 구조를 가진 로봇손목기구의 개발)

  • 문창렬;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.281-286
    • /
    • 1993
  • In this paper, a parallel link typed wrist is developed for robotic precision assembly. The developed wrist can make the corrective motion required for compensating lateral and tilting errors. The mechanism of this wrist is one example of a motion simulator generating 6 DOF motion in space by 6 actuators connected in paralle. To make the wrist more compact, miniature DC motors containing reduction gears and servo system were used. The parallel link architecture enables a high positioning accuracy and high nominal load capacity. In this study, inverse kinematic problem is solved by using a Denavet-Hartenberg method and a simulational result about workspace of the proposed parallel mechanism is obtained.

  • PDF

Calibration of 6-DOF Parallel Mechanism Through the Measurement of Volumetric Error (공간오차 측정을 통한 6자유도 병렬기구의 보정)

  • Oh, Yong-Taek;Saragih, Agung S.;Kim, Jeong-Hyun;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-54
    • /
    • 2012
  • This paper introduces the kinematic calibration method to improve the positioning accuracy of a parallel mechanism. Since all the actuators in the parallel mechanism are controlled simultaneously toward the target position, the volumetric errors originated from each motion element are too complicated. Therefore, the exact evaluation of the error sources of each motion element and its calibration is very important in terms of volumetric errors. In the calibration processes, the measurement of the errors between commands and trajectories is necessary in advance. To do this, a digitizer was used for the data acquisition in 3 dimensional space rather than arbitrary planar error data. After that, the optimization process that was used for reducing the motion errors were followed. Consequently, Levenberg-Marquart algorithm as well as the error data acquisition method turned out effective for the purpose of the calibration of the parallel mechanism.

Adversarial Framework for Joint Light Field Super-resolution and Deblurring (라이트필드 초해상도와 블러 제거의 동시 수행을 위한 적대적 신경망 모델)

  • Lumentut, Jonathan Samuel;Baek, Hyungsun;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.672-684
    • /
    • 2020
  • Restoring a low resolution and motion blurred light field has become essential due to the growing works on parallax-based image processing. These tasks are known as light-field enhancement process. Unfortunately, only a few state-of-the-art methods are introduced to solve the multiple problems jointly. In this work, we design a framework that jointly solves light field spatial super-resolution and motion deblurring tasks. Particularly, we generate a straight-forward neural network that is trained under low-resolution and 6-degree-of-freedom (6-DOF) motion-blurred light field dataset. Furthermore, we propose the strategy of local region optimization on the adversarial network to boost the performance. We evaluate our method through both quantitative and qualitative measurements and exhibit superior performance compared to the state-of-the-art methods.

Estimation of Sensitivity Axis Offset of an Accelerometer for Accurate Measurement of the 6 DOF Human Head Motion (인체 머리부 6 자유도 운동 측정의 신뢰성 향상을 위한 가속도계 감도축의 옵셋(offset) 추정)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon;Jang, Han-Kee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.905-912
    • /
    • 2008
  • Notion sickness is well known to be caused by long time exposure to the very low frequency motion in the multiple axes of human body Since the vestibular system for the perception of low frequency motion is located in the head, accurate measurement of 6 degree of freedom head motion is of great importance. In this study, the measurement system consisting of a safety helmet and 9 translational accelerometers was constructed for the estimation of 3 translational and 3 rotational motions of human head. Since estimation errors of 3 rotational components can be significantly magnified even by small offset of the sensitivity axis from the geometric center of an accelerometer, accurate measurement of sensitivity axis must be preceded. The method for accurate estimation of the offset was proposed, and the effect of offset on the estimation of angular acceleration was investigated.

Modeling and Simulation of a Ship with Anti-Rolling Devices in Waves (자세제어장비를 장착한 선박의 파랑중 운동 모델링 및 시뮬레이션)

  • 윤현규;이경중;이창민
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.285-290
    • /
    • 2004
  • Wave exciting force and moment generate the motions of a ship in waves. Since ship motion exerts the negative influences on a crew's operability, the safety of cargos, passenger's comfort, etc, the anti-rolling devices may be required to reduce such motion. In this paper, the dynamics of the anti-rolling devices such as passive and active moving weight stabilizer and anti-rolling tank, and fin stabilizer are mathematically modeled. While the effect of the motion of the anti-rolling device on a ship was taken into consideration in roll mode only in the past, the 6 DOF coupled equations of motion between a ship and the anti-rolling devices are constituted. Finally the motion of a ship with anti-rolling devices in waves is simulated through the developed simulation program.

  • PDF

Inverse Kinematic and Dynamic Analyses of 6-DOF PUS Type parallel Manipulators

  • Kim, Jong-Phil;Jeha Ryu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • This paper presents inverse kinematic and dynamic analyses of HexaSlide type six degree-of-freedom parallel manipulators. The HexaSlide type parallel manipulators (HSM) can be characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. In the inverse kinematic analyses, the slider and link motion (position, velocity, and acceleration) is computed given the desired mobile platform motion. Based on the inverse kinematic analysis, in order to compute the required actuator forces given the desired platform motion, inverse dynamic equations of motion of a parallel manipulator is derived by the Newton-Euler approach. In this derivation, the joint friction as well as all link inertia are included. Relative importance of the link inertia and joint frictions on the computed torque is investigated by computer simulations. It is expected that the inverse kinematic and dynamic equations can be used in the computed torque control and model-based adaptive control strategies.

Modelling and Accurate Tracking Controller Design of A Transfer Crane (트랜스퍼 크레인의 모델링 및 고정도 주행제어기 설계에 관한 연구)

  • Kim, Young-Bok;Suh, Jin-Ho;Lee, Kwon-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.114-122
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in a limited time. To achieve this objective, many strategies have been introduced and applied. If we consider the automated container terminal, it is necessary that the cargo handling equipment is equipped with more intelligent control systems. From the middle of the 1990s, an automated rail-mounted gantry crane (RMGC) and rubber-tired gantry crane (RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, equipment like CCD cameras and sensors have been mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes that make the cargo handling be performed effectively in the yards. For this plant, we ought to consider modeling, tracking control, anti-sway system design, skew motion suppressionand complicated motion control and suppressing problems. In this paper, the system modeling and a tracking control approach are discussed, based on a two-degree-of-freedom (2DOF) servo-system design. From the simulation results, the good control performance of the designed control system is evaluated.

Permanent Magnet Biased Linear Magnetic Bearing for High-Precision Maglev Stage (초정밀 자기부상 스테이지의 위치제어를 위한 영구자석형 선형 자기베어링의 개발)

  • Lee, Sang-Ho;Chang, Jee-Uk;Kim, Oui-Serg;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.164-169
    • /
    • 2001
  • The active magnetic bearing has many advantages - an active positioning, no contact and lubrication free motion - and is widely used in high precision motion stages. But, the conventional magnetic bearings composed of electromagnets only are power consuming due to their bias current and have the excessive heat generation, which can make the repeatability of the positioning system worse. To overcome this drawback, we developed a novel permanent magnet (PM) biased linear magnetic bearing for a high precision magnetically levitated stage. The permanent magnets provide a bias flux and generate a bias force, and the electromagnet increases or reduces a flux of the permanent magnets and gives a levitation force. This paper presents a theoretical magnetic circuit analysis, FEM analysis and experimental data from the 1-DOF tests, and compares the theoretical power consumption of the electromagnetic bearings and the PM biased linear magnetic bearings. The PM biased linear magnetic bearing presented in this paper gives better load capacity but lower power consumption than a conventional electromagnetic bearing and will be adopted in our 6-DOF high precision linear positioning maglev stage.

  • PDF

A STUDY ON THE STORE SEPARATION PREDICTION TECHNIQUE USING GRID SURVEY METHOD (GRID SURVEY 방법을 이용한 무장분리예측 기법 연구)

  • Kim, Sang-Jin;Kang, In-Mo;Kim, Myung-Seong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.136-141
    • /
    • 2006
  • A prediction of store separation trajectory using grid survey method has been conducted. For the grid survey method, store's aerodynamic flowfield data such as freestream and grid data is needed to solve 6 degree of freedom(6-DOF) equations of motion. In the presented study, aerodynamic flowfield data was generated by Euler solver instead of CTS wind tunnel test. The predicted trajectories shows good agreement with CTS test results.

  • PDF