• Title/Summary/Keyword: 6-DOF(6-Degree Of Freedom)

Search Result 113, Processing Time 0.027 seconds

Development of a 2-DOF Ankle Mechanism for Gait Rehabilitation Robots (보행 재활 로봇을 위한 2자유도 족관절 기구 개발)

  • Heo, Geun Sub;Kang, Oh Hyun;Lee, Sang Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.503-509
    • /
    • 2015
  • In this paper, we designed and tested an ankle joint mechanism for a gait rehabilitation robot. Gait rehabilitation programs are designed to improve the natural leg motion of patients who have lost their walking capabilities by accident or disease. Strengthening the muscles of the lower-limbs and stimulation of the nervous system corresponding to walking helps patients to walk again using gait assistive devices. It is an obvious requirement that the rehabilitation system's motion should be similar to and as natural as the normal gait. However, the system being used for gait rehabilitation does not pay much attention to ankle joints, which play an important role in correct walking as the motion of the ankle should reflect the movement of the center of gravity (COG) of the body. Consequently, we have designed an ankle mechanism that ensures the safety of the patient as well as efficient gait training. Also, even patients with low leg muscle strength are able to operate the ankle joint due to the direct-drive mechanism without a reducer. This safety feature prevents any possible adverse load on the human ankle. The additional degree of freedom for the roll motion achieves a gait pattern which is similar to the normal gait and with a greater degree of comfort.

Operational Characteristics of a Domestic Commercial Semi-automatic Vegetable Transplanter (상용 국산 반자동 채소 정식기의 작동 특성 분석)

  • Park, Jeong-Hyeon;Hwang, Seok-Joon;Nam, Ju-Seok
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.127-138
    • /
    • 2018
  • In this study, the operational characteristics of a domestic vegetable transplanter were investigated. The main functional components and power path of the tranplanter were analyzed. The link structure of transplanting device waskinematically analyzed, and 3D modeling and dynamic simulation were performed. Based on this analysis, the trajectory of the bottom end of the transplanting hopper was analyzed. Also, the plant spacing according to the engine speed and the shifting stage of transplanting transmission was analyzed and verified by field test. As main results of this study, the transplanting device is one degree of freedom(DOF) 4-bar link type mechanism which comprises 10 links and 13 rotating joints. The transplanting hopper plants seedlings in a vertical direction while maintaining a constant posture by the links of transplanting device. The power is transmitted to both the driving part and transplanting part from the engine, and the maximum and minimum plant spacing of the transplanting device were 428.97 mm and 261.20 mm.

Study on Hydrodynamic Forces Acting on Tanker Hull with Consideration of Various Vertical Centers of Gravity in Drift Test (다양한 수직방향 무게중심을 고려한 사항 중 탱커 선체에 작용하는 유체력에 관한 연구)

  • Park, Taechul;Lee, Sungwook;Paik, Kwang-Jun;Moon, Sung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.433-439
    • /
    • 2018
  • An investigation was conducted to determine whether the changes in the maneuvering forces and moments acting on a hull could be affected by changing the vertical center of gravity (VCG) of a tanker. The changes in the hydrodynamic forces and moment acting on a hull according to the restraint conditions of motion were examined using CFD for cases where the VCG was located at the design draught (100% of draught), under the design draught (75% of draught), and at half of the design draught (50% of draught). The following motion restraint conditions were selected: (1) fixed restraints for everything; (2) heave, pitch, and roll free restraint; and (3) heave and pitch free restraints. It was found that restraint condition (2) had the best agreement with the model experiment results. In addition, it was found that the hydrodynamic forces and moment acting on the hull with restraint condition (2) could be greatly affected in the model tests and CFD calculations by the various configurations for the vertical center of gravity of the hull. Finally, it was concluded that the location of the vertical center of gravity of the hull could be an important factor when more accurate hydrodynamic maneuvering forces and moment are estimated.

Experimental Verification of Effectiveness of Stabilization Control System for Mobile Surveillance Robot (기동형 경계로봇 안정화 시스템의 실험적 검증)

  • Kim, Sung-Soo;Lee, Dong-Youm;Kwon, Jeong-Joo;Park, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • A mobile surveillance robot is defined as a surveillance robot system that is mounted on a mobile platform and is used to protect public areas such as airports or harbors from invaders. The mobile surveillance robot that is mounted on a mobile platform consists of a gun module, a camera system module, an embedded control system, and AHRS (Attitude and Heading Reference System). It has two axis control systems for controlling its elevation and azimuth. In order to obtain stable images for targeting invaders, this system requires a stabilizer to compensate any disturbance due to vehicle motion. In this study, a virtual model of a mobile surveillance robot has been created and ADAMS/Matlab simulations have been performed to verify the suitability of the proposed stabilization algorithm. Further, the suitability of the stabilization algorithm has also been verified using a mock-up of the mobile surveillance robot and a 6-DOF (Degree Of Freedom) motion simulator.

Identification of Load Carrying and Vibration Characteristics of Oil-Free Foil Journal Bearing Structures for High Speed Motors (고속 전동기용 무급유 포일 저널 베어링 구조체의 하중지지 및 진동 특성 규명)

  • Baek, Doo San;Hwang, Sung Ho;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.261-272
    • /
    • 2021
  • This study investigates the structural characteristics of oil-free, gas beam foil journal bearings (GBFJBs) for use in high speed motors. Mathematical modeling was carried out, and reaction force modeling for static load was performed to predict the structural characteristics of the GBFJB. Mathematical modeling and reaction force modeling for static load are performed to predict the structural characteristics of GBFJBs. The reaction force of the test bearing against static loads was measured during experiments and compared with the predicted results. The measured experimental data reveal the nonlinear stiffness characteristics of the GBFJB against varying displacement and agree well with the predictions. Dynamic load tests using an exciter allow to identify the vibration characteristics of the GBFJB. Test results show that the vibration displacement, dynamic force, and acceleration measured on the test bearing are most dominant at the applied dynamic load (synchronization) frequency. Futhermore, the test results show that the hysteresis area recorded during the dynamic tests increases with the excitation amplitude and frequency, and that the beam stick phenomena occurr at high excitation frequencies. The single degree of freedom (DOF) vibration model aids to identify the stiffness and damping coefficient of the GBFJB, which decrease as the excitation frequency increases.

Fast Marker-based Registration of 3D CT and 2D X-ray Fluoroscopy Images (3차원 전산화 단층촬영영상과 2차원 X-선 투시영상간 표식기 기반 고속 정합)

  • Kim Gye-Hyun;Park Seong-Jin;Hong He-Len;Shin Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.3
    • /
    • pp.335-343
    • /
    • 2006
  • This paper proposes a novel technique of marker-based 2D-3D registration to combine 3D information obtained from preoperative CT images into 2D image obtained from intraoperative x-ray fluoroscopy image. Our method is divided into preoperative and intraoperative procedures. In preoperative procedure, we generate CT-derived DRRs using graphics hardware and detect markers automatically. In intraoperative procedure, we propose a hierarchical two- step registration to reduce a degree of freedom from 6-DOP to 2-DOF which is composed of in-plane registration using principal axis method and out-plane registration using minimal error searching method in spherical coordinate. For experimentation, we use cardiac phantom datasets with confirmation markers and evaluate our method in the aspects of visual inspection, accuracy and processing time. As experimental results, our method keeps accuracy and aligns very fast by reducing real-time computations.

Line-of-Sight Rate for Off-axis Seeker on a 2-axis Gimbal (2축 김발 위에 장착된 비축탐색기를 위한 시선각속도 계산)

  • Kim, Jeong-Hun;Park, Kuk-Kwon;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.187-194
    • /
    • 2019
  • The off-axis Infra-Red(IR) seeker is mounted on the nose cone side of the anti-air high speed missile to alleviate thermal shield effect due to aerodynamic heating. The seeker output can not be regarded as the Line-of-Sight(LOS) rate any more as missile's roll motion to keep the target tracking is associated. In this paper, we propose a method to calculate the LOS rate for off-axis seeker on a 2-axis gimbal. Firstly, true LOS rate equations are analytically derived but not implementable because boresight error rate is not measurable. And then the first order lag approximation to obtain boresight error rate is proposed. The proposed LOS rate calculation method can compensate the coupling effect by considering the rotations of missile and gimbal. The performance of the proposed method is verified via full nonlinear 6-DOF(Degree of Freedom) simulations.

Nonlinear System State Estimating Using Unscented Particle Filters (언센티드 파티클 필터를 이용한 비선형 시스템 상태 추정)

  • Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1273-1280
    • /
    • 2013
  • The UKF algorithm for tracking moving objects has fast convergence speed and good tracking performance without the derivative computation. However, this algorithm has serious drawbacks which limit its use in conditions such as Gaussian noise distribution. Meanwhile, the particle filter(PF) is a state estimation method applied to nonlinear and non-Gaussian systems without these limitations. But this method also has some disadvantages such as computation increase as the number of particles rises. In this paper, we propose the Unscented Particle Filter (UPF) algorithm which combines Unscented Kalman Filter (UKF) and Particle Filter (PF) in order to overcome these drawbacks.The performance of the UPF algorithm was tested to compare with Particle Filter using a 2-DOF (Degree of Freedom) Pendulum System. The results show that the proposed algorithm is more suitable to the nonlinear and non-Gaussian state estimation compared with PF.

Decision Making Model for Powertrain Mount-Stop&Go Performance in a compact mobile (소형 승용차의 파워트레인 마운트 Stop&Go 성능 적용을 위한 의사결정모델)

  • Yu, Jung-Woo;Um, In-Sup;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.967-976
    • /
    • 2012
  • This study presents a model to minimize vibration and noise of powertrain mount on a compact car which has the application of Stop & Go performance, in order to reduce CO2 and achieve better fuel-efficiency in accordance with the environmental regulations in automotive industries. In the first step, we analyze the powertrain mount system of the automobile "A" and present variables about rubber stiffness applied on powertrain mount using the Taguchi method. In the next step, we verify the optimization of vibration and noise which meet Stop & Go performance using the AHP(Analytic Hierarchy Process) method on the proto products for each variable. Using this validation system on the initial stage of the powertrain mount design, it is expected that we can grasp vibration and noise problems caused by engine movements and control them effectively without engineering know-how about powertrain mount rubber stiffness.

Design of Vision-based Interaction Tool for 3D Interaction in Desktop Environment (데스크탑 환경에서의 3차원 상호작용을 위한 비전기반 인터랙션 도구의 설계)

  • Choi, Yoo-Joo;Rhee, Seon-Min;You, Hyo-Sun;Roh, Young-Sub
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.421-434
    • /
    • 2008
  • As computer graphics, virtual reality and augmented reality technologies have been developed, in many application areas based on those techniques, interaction for 3D space is required such as selection and manipulation of an 3D object. In this paper, we propose a framework for a vision-based 3D interaction which enables to simulate functions of an expensive 3D mouse for a desktop environment. The proposed framework includes a specially manufactured interaction device using three-color LEDs. By recognizing position and color of the LED from video sequences, various events of the mouse and 6 DOF interactions are supported. Since the proposed device is more intuitive and easier than an existing 3D mouse which is expensive and requires skilled manipulation, it can be used without additional learning or training. In this paper, we explain methods for making a pointing device using three-color LEDs which is one of the components of the proposed framework, calculating 3D position and orientation of the pointer and analyzing color of the LED from video sequences. We verify accuracy and usefulness of the proposed device by showing a measurement result of an error of the 3D position and orientation.