• Title/Summary/Keyword: 6 mm steel plate

Search Result 108, Processing Time 0.021 seconds

Effects of Corner Radius on the Stress Strength Safety of LPG Steel Cylinder (LPG 강재용기의 응력강도 안전성에 미치는 코너반경의 영향)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • This paper presents the stress strength safety of LPG steel cylinder for various corner radiuses of upper round end plate and lower round end plate by using a finite element method. The FEM analyzed results indicate that the most influential elements is a corner radius of upper round end plate and lower round end plate rather than a thickness of LPG cylinder. But, the thickness of a steel cylinder is an important design element considering for a weight reduction of a cylinder. Thus, this paper recommends that the LPG steel cylinder thickness is 2.3~2.6mm and the corner radius of upper round end plate and lower round end plate is over 157mm as an optimum design for the maximum testing pressure of 3.04MPa.

EFFECT OF STAINLESS STEEL PLATE POSITION ON NEUTRON MULTIPLICATION FACTOR IN SPENT FUEL STORAGE RACKS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • The neutron multiplication factor in spent fuel storage racks, in which a stainless steel plate encloses a fuel assembly, was evaluated according to the variation of distance between the fuel assembly and stainless steel plate, as well as the pitch. The stainless steel plate position with the lowest multiplication factor on each pitch consistently appeared as 6mm or 9mm away from the outmost surface of the fuel assembly. Because the stainless steel plate has a thermal neutron absorption cross section, its ability to absorb neutrons can work best only if it is installed at the position where thermal neutrons can be gathered most easily. Therefore, the stainless steel plate position should not be too close or too far away from the fuel assembly, but it should be kept a pertinent distance from the fuel assembly.

A Study for Structural Capacity Evaluation of Embedded Steel Plate Connected with Prestressed Concrete Beam to Build Large Space Educational Facilities (대공간 교육시설 축조를 위한 프리스트레스트 보에 사용되는 접합 강재의 성능평가에 대한 연구)

  • Lee, Kyoung-Hun
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.2
    • /
    • pp.1-7
    • /
    • 2011
  • An experimental study to evaluate structural capacity of an embedded plate connected with prestressed concrete beam was performed. Embedded steel plates and prestressed concrete beam were connected with stud-bolts at the ends of concrete beam specimens. About 1,000 kN concentrated load was applied at 450mm away from the end of beam specimen. A 3,000 kN capacity static Oil-jack was used to direct concentrated load. The maximum strain of stud-bolt recorded $90{\times}10^{-6}$(mm/mm) and wide width cracks were not founded. Any falling failures of concrete and large deformations were not founded either between steel plate and prestressed concrete specimen. As a result, construction performance can be improved using this embedded steel plate connection system apply to large space educational facilities.

A Study on the Roll Forming Characteristics of an Asymmetric Roller with a 6 mm Steel Plate using the Finite Element Method (유한요소법을 사용한 6 mm 후판의 비대칭 롤포밍 성형변형특성에 관한 연구)

  • Kim, Seongsoo;Lee, Gyeonghwan;Chung, Hanshik;Kim, Dong-Uk;Lee, Je-Hyun;Choi, Heekyu
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.494-499
    • /
    • 2009
  • As a novel method to produce a steel beam with 6mm thickness for buildings, a continuous roll forming process is reported. The roll shape is asymmetric and consists of 6 pairs of rollers to bend the steel plate from $0^{\circ}$ to $90^{\circ}$. Results obtained upon application of the roll forming process showed that the angle of the section plate is $90^{\circ}$. However, defects such as bowing and camber as high as 3.2 [$^{\circ}/m$] were observed. A FEM (Finite Element Method) analysis was applied to investigate the causes of the results for the region between rollers no. 5 and no. 6. The results of a FEM simulation of deformation and stress showed that there are some strong peak stresses on the upper surface and bottom surface of the material. The positions of the peak stresses did not show a correspondence between the upper and bottom surfaces. Thus, the defects in the process of roll forming with a 6 mm thick steel plate occur by the unbalanced stresses between the upper surface and bottom surface of the material in this study.

Strengthening of reinforced concrete beams with epoxy-bonded perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Uysal, Ali
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.735-751
    • /
    • 2012
  • Although being one of the most popular strengthening techniques in reinforced concrete beams, the use of steel plates bonded to the soffit raises problems of ductility. This study aims at investigating the influence of the use of perforated steel plates instead of solid steel plates on the ductility of reinforced concrete beams. A total of nine reinforced concrete beams were tested. In addition to an unplated beam, eight beams with perforated steel plates of two different thicknesses (3 mm and 6 mm) were subjected to monotonic loading. Effect of bonding the plates to the beams with anchor bolts and with additional side plates bonded to the sides of the beam with and without anchors is also investigated. The use of bolts in addition to epoxy was found to greatly contribute to the ductility and energy absorption capacity of the beams, particularly in specimens with thick plates (6 mm) and the use side plates in addition to the bottom plate was found to be ineffective in increasing the ductility of a concrete beam unless the side plates are attached to the beam with anchors bolts. The thickness of the plate was found to have little effect on the bending rigidity of the beam.

An Experimental Study on the Vibration and Fire Resistance of Steel Void Deck Plate Slab for Omega-steel plate (오메가형 강판을 중공체로 사용한 데크플레이트 슬래브의 진동 및 내화에 관한 실험적 연구)

  • Kim, Sang-Seup;Ryu, Deog-Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.705-713
    • /
    • 2011
  • This study was conducted to assess the vibration capacity and the fire resistance capacity of a deck plate slab using an omega steel plate as the void deck plate. First, to evaluate the vibration capacity of the deck plate slab after the insertion of the omega steel plate, three 150mm specimens and three 200mm specimens were made using the slab depth as the main variable. Each specimen consisted of an existing deck plate and two specimens, using the topping depth as the variable according to the slab depth. Second, two real-size specimens were made to evaluate the fire resistance capacity. The results of the test showed that the steel-wire-integrated deck plate slab that was inserted in the omega steel plate did not have a vibration problem due to the void deck plate, because the natural frequency was 12.66-14.09 Hz in the vibration test, and each specimen satisfied the appraisal standards for the load capacity, heat block quality, and chloride inhibition for two hours in the fire resistance test. Consequently, the steel-wire-integrated deck plate slab that was inserted in the omega steel plate can be reduced using the concrete volume and can have higher vibration and fire resistance capacities, similar to the existing deck plate.

Long-distance cutting of 10-30 mm thick stainless-steel with a 6-kW fiber laser for applications in nuclear decommissioning

  • Jae Sung Shin;Gwon Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4637-4641
    • /
    • 2023
  • For nuclear decommissioning applications, a study was conducted to investigate the feasibility of using a laser for long-distance cutting in complex structures. Cutting tests were performed on stainless steel plates with thicknesses ranging from 10 mm to 30 mm at distances of 300 mm-700 mm from the laser head, using a laser power of 6 kW. Remarkably, the 10 mm and 20 mm thick stainless-steel plates were successfully cut at a distance of 700 mm from the head. Based on the trends observed in the results, it is anticipated that these thicknesses could also be cut at distances of approximately 1 m. Similarly, the 30 mm thick stainless-steel plate was effectively cut at a distance of 500 mm from the head. To evaluate the amount of secondary waste generated, the kerf width was measured. Due to the long-distance cutting, the average kerf width ranged from 6 mm to 16 mm. Despite the wider kerf width, long-distance cutting holds promise for efficiently handling hard-to-reach targets in nuclear decommissioning scenarios.

CW $CO_2$ Laser Beam Welding and Formability of Zn-Coated Steel Plates (아연도금강판의 CW $CO_2$ 레이저 용접 및 성형성)

  • Suh, J.;Han, Y.H.;Yoon, C.S.;Bang, S.Y.
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.145-155
    • /
    • 1995
  • Continuous wave C $O_{2}$ laser beam welding and formability of zinc coated steel plates were investigated. First, the optimal welding condition could be obtained in lap configuration by using the data for heat input, gap size and fracture behaviour. The gap size for fully-penetrated bead could be predicted by the gap model by Akhter et al. AIso, it was found that the joining efficiency was constant. Secondly, the butt welding of dissimilar materials (zinc coated steel plate and cold rolled steel plate) with different thicknesses was investigated. In the thickness range of 0.8-2.0 mm, the maximum welding speed of 10m/min was obtained. In the butt welding of two plates with thickness 2.0 mm and l.6mm, the maximum, welding speed of 6m/min was obtained, Finally. the forming results of butt-welded plates showed that the joining design was important to apply the laser welded blank in the automotive production.

  • PDF

A Study on the Cutting Surfaces in CNC Plasma Cutting of high tensile steel plate (고장력 강판의 CNC Plasma 절단시 절단면에 관한 연구)

  • 김인철;김성일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.149-154
    • /
    • 2003
  • The cutting tests of high tensile steel plate(AH36) were carried out using CNC plasma arc cutting machine. Both top and bottom width of kerf and the surface roughness(Ra, Rmax) of cut surface are measured under various cutting conditions such as cutting speed, steel plate thickness, etc. In the CNC plasma arc cutting, the surface roughness decreases as cutting speed increases. The hardness is high up to 4mm depth from the cutting surface. In the cutting speed 1300~2100mm/min, the ratio of proper kerf width(Wt/Wb) is around 2.6. Through the series the series of experiments, the satisfactory cutting conditions of high tensile steel plate were found.

  • PDF

Feasibility study on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell

  • Chung, Myungjin;Kim, Jongmin;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.571-582
    • /
    • 2019
  • This study aimed to assess the feasibility on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell. First, 5-m-wide and 15-m-long 9%Ni steel plates were test manufactured from a steel mill and specimens taken from the plates were tested for strength, toughness, and flatness to verify their performance based on international standards and design specifications. Second, plates with a thickness of 10 mm and 25 mm, a width of 4.8~5.0 m, and a length of 15 m were test fabricated by subjecting to pretreatment, beveling, and roll bending resulting in a final width of 4.5~4.8 m and a length of 14.8m with fabrication errors identical to conventional plates. Third, welded specimens obtained via shield metal arc welding used for vertical welding of inner tank shell and submerged arc welding used for horizontal welding were also tested for strength, toughness and ductility. Fourth, verification of shell plate material and fabrication was followed by test erection using two 25-mm-thick, 4.5-m-wide and 14.8-m-long 9%Ni steel plates. No undesirable welding failure or deformation was found. Finally, parametric design using wide and long 9%Ni steel plates was carried out, and a simplified design method to determine the plate thickness along the shell height was proposed. The cost analysis based on the parametric design resulted in about 2% increase of steel weight; however, the construction cost was reduced about 6% due to large reduction in welding work.