• Title/Summary/Keyword: 6 MW class offshore wind turbine

Search Result 3, Processing Time 0.016 seconds

Development of High-speed Shaft Coupling for 6 MW Class Offshore Wind Turbine (6 MW급 해상풍력발전기용 고속축커플링 개발)

  • Park, Soo-Keun;Lee, Hyoung-Woo
    • Journal of Wind Energy
    • /
    • v.10 no.4
    • /
    • pp.20-27
    • /
    • 2019
  • High-speed shaft coupling in a wind power system transmits power and absorbs variations in length and spindle dislocation between the gearbox and generator. Furthermore, the coupling has an insulation function that prevents electrical corrosion caused by the flow of the generator's current into the gearbox and prevents overload resulting from sudden power failure from being transferred to the gearbox. Its design, functions, and part verification are described in the IEC61400 and GL Guidelines, which specify that the part must have a durability life of 20 years or longer under distance variation and axial misalignment between the gearbox and the generator. This study presents the design of a high-speed coupling through composite stiffness calculation, structural analysis, and comparative analysis of test and theory to identify the characteristics of high-speed coupling for a large-capacity 6 MW wind power generator. A prototype was fabricated by optimizing the manufacturing process for each part based on the design, and the reliability of the fabricated prototype was verified by evaluating the performance of the target quantitative evaluation items.

A Comparative Study on Aerodynamic Validation in Design Process of an Airfoil for Megawatt-Class Wind Turbine (메가와트 급 풍력터빈용 에어포일의 설계 단계에서의 공력성능 검증 기법 비교)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.933-940
    • /
    • 2016
  • A comparative study between a wind tunnel test and an XFOIL simulation looking at the aerodynamic performance of the airfoil for MW-class wind turbine was conducted for validation in the design stage. Tests are carried out for 21% and 30% thickness-ratio airfoils developed for 5 ~ 10 MW offshore wind turbine and the results are compared with the output from the XFOIL simulation at Reynolds number $1.0{\times}10^7$. The test is performed at a free-stream velocity of 50 m/s, corresponding to a Reynolds number of $2.2{\times}10^6$ based on the chord. Surface roughness is simulated using a zig-zag tape. Discrepancies between the results of the test and the XFOIL analysis are found, however, meaningful data for surface pressure distribution, basic performance and surface roughness effect are obtained from the tests, while useful lift-to-drag ratio data is found by the XFOIL simulation.

Strategy for Domestic Offshore Wind Power Development based on the Analysis of Natural Resources and Technology Level (부존량 및 기술수준 분석을 통한 국내 해상풍력 추진전략)

  • Ryu, Moo-Sung;Kang, Keum-Seok;Lee, Jun-Shin;Kim, Ji-Young
    • New & Renewable Energy
    • /
    • v.6 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • Developing the offshore wind farm is essential to meet the national target of the renewable energy and to achieve the green growth in Korea. In this context, KEPRI is now carrying the feasibility study for introducing the offshore wind fam in Korea. Accordingly, it is required to formulate an appropriate strategy, this paper mainly discuss, for this goal. First of all, several preliminary sites for the offshore wind farm are selected based on the evaluation criteria presented herein. In addition, the domestic sub-technological level of key technology sectors associated with the offshore wind power is analyzed. It includes the industries related to wind turbine, grid integration, structural design and construction. Integrating these results, we propose a strategy in order to successfully develop the first offshore wind farm more than 100-MW class in the south-western sea area of Korea.