• Title/Summary/Keyword: 6 M formic acid

Search Result 94, Processing Time 0.029 seconds

Quantitative Analysis of Antioxidants in Korean Pomegranate Husk (Granati pericarpium) Cultivated in Different Site (HPLC에 의한 산지별 한국산 석류과피 중 항산화화합물의 함량분석)

  • Kwak, Hye-Min;Jeong, Hyun-Hee;Song, Bang-Ho;Kim, Jong-Guk;Lee, Jin-Man;Hur, Jong-Moon;Song, Kyung-Sik
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.431-434
    • /
    • 2005
  • The quantitative analytical method for major antioxidants, ellagic acid and punicalagin, in pomegranate husk (Granati pericarpium) were established by HPLC. The optimal HPLC conditions were as follows: Column; Agilent Zorbax Eclipse XDB-C18 ($4.6{\times}150mm,\;5{\mu}m$), mobile phase; 1% formic acid in water (A) and 1% formic acid in MeCN (B) (gradient elution of 5% to 100% B for 50 min), flow rate; 0.8 ml/min., detection; UV 254 nm. The optimal pre-treatment conditions for HPLC analysis were as follows: 5 g of pomegranate husk in 100 ml of 95% EtOH, refluxed for 3 h. Under these analytical conditions, punicalagin and ellagic acid contents in Korean pomegranates husks which were cultivated in five different sites were determined. As results, the ellagic acid and punicalagin (as a mixture of ${\alpha-\;and\;{\beta}-anomer$) contents were the highest in Haepyung pomegranate husk $(15.27{\mu}g/mg)$ and Jangsung pomegranate husk $(16.21{\mu}g/mg)$, respectively.

Prediction of Formic Acid Chromatogram in Gradient Elution Chromatography

  • Won, Hye-Jin;Kim, In-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • Optimal operation in chromatography is needed to save operation time and the solvent used in multiple chromatographic runs. To this end, many simulation studies of chromatography process have been performed. The relationship between the distribution coefficient and the ionic strength is important in gradient elution ion chromatography. Experimental runs and computer simulations were carried out under linear gradient elution condition in order to compare the experiments and the simulation. Experiments were performed with formic acid under isocratic conditions to determine the simulation equation parameters. Computer simulation was based on three equations which related distribution with ionic strength as follows; K=${\alpha}$I(sup)-${\beta}$, K=A+BI+Cl$^2$and K=y(sub)0+A$_1$$.$e(sup)(-I/m$_1$). The effects of gradient slope on the chromatograms are discussed, and good agreement between the experimental and the simulated results is shown.

  • PDF

Determination of Free Amino Acids in Isatidis Radix By HILIC-UPLC-MS/MS

  • Pan, Yilin;Li, Jin;Li, Xiang;Chen, Jianwei;Bai, Ganggang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.197-203
    • /
    • 2014
  • A rapid, accurate and precise method for the determination of 22 amino acids in Isatidis Radix by Hydrophilic Interaction Ultra-High-Performance Liquid Chromatography Coupled with Triple-Quadrupole Mass Spectrometry (HILIC-UPLC-MS/MS) was established. Chromatographic separation was carried out on a Acquity UPLC BEH Amide column ($2.1mm{\times}100mm$, $1.7{\mu}m$) with gradient elution of acetonitrile (containing 0.05% formic acid and 2 mM ammonium formate) and water (containing 0.15% formic acid and 10 mM ammonium formate) at a flow rate of 0.4 mL/min; Waters Xevo$^{TM}$ TQ worked in multiple reaction monitoring mode. All components were separated in 17 min. All calibration curves were linear ($R^2$ > 0.991) over the tested ranges. The limits of detection (LOD) and limits of quantitation (LOQ) for these compounds were 0.21-79.55 and 0.72-294.23 ng/mL, respectively. The average recoveries were in the range of 93.75-104.16% with RSD value less than 6.56%. Therefore, this method could be an alternative assay for the determination of 22 amino acids in Isatidis Radix due to its rapidness, sensitivity, less sample and solvent consumption.

Nitrogen Retention and Chemical Composition of Urea Treated Wheat Straw Ensiled with Organic Acids or Fermentable Carbohydrates

  • Sarwar, M.;Khan, M. Ajmal;Nisa, Mahr-un
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1583-1591
    • /
    • 2003
  • The influence of varying levels of urea and additives on nitrogen (N) retention and chemical composition of wheat straw was studied. The wheat straw was treated with 4, 6 and 8% urea and ensiled with 1.5, 2 and 2.5% of acetic or formic acid and 2, 4 and 6% of corn steep liquor (CSL) or acidified molasses for 15 days. The N content of wheat straw was significantly different across all treatments. The N content of urea treated wheat straw was increased with the increasing level of urea. The N content was higher in urea treated wheat straw ensiled with acetic or formic acid as compared to urea treated wheat straw ensiled without these organic acids. The N content of urea treated wheat straw was further enhanced when it was ensiled with CSL or acidified molasses. This effect was significant across all levels of urea used to treat the wheat straw. Nitrogen retention in urea treated wheat straw was decreased linearly as the urea level was increased to treat the wheat straw. The N content was increased linearly when higher levels of CSL or acidified molasses were used to ensile the urea treated wheat straw. Most of the N in urea treated wheat straw was held as neutral detergent insoluble N (NDIN). The NDIN content was increased linearly with the increasing levels of urea and additives. The neutral detergent fiber (NDF) contents were higher in urea treated wheat straw ensiled with acetic or formic acid as compared to urea treated wheat straw ensiled without additive. The NDF content further increased in urea treated wheat straw ensiled with CSL and acidified molasses. The entire increase in NDF content was because of fiber bound N. The hemicellulose content of urea treated wheat straw ensiled with CSL or acidified molasses was higher as compared to urea treated wheat straw ensiled with acetic or formic acid. The acid detergent fiber content of urea treated wheat straw ensiled with or without additives remained statistically non-significant. The cellulose contents of wheat straw was linearly reduced when urea level was increased from 4 to 6 and 8% to treat the wheat straw. This effect was further enhanced when urea treated wheat straw was ensiled with different additives. The results of the present study indicated that fermentable carbohydrates might improve the Nitrogen retention and bring the favorable changes in physiochemical nature of wheat straw. However, biological evaluation of urea treated wheat straw ensiled with fermentable carbohydrates is required.

Validation of the LC-MS/MS Method for Ginsenoside Rb1 Analysis in Human Plasma (LC-MS/MS를 이용한 인체 혈장에서 Ginsenoside Rb1의 분석법 검증)

  • Han, Song-Hee;Kim, Yunjeong;Jeon, Ji-Young;Hwang, Minho;Im, Yong-Jin;Lee, Sun Young;Chae, Soo-Wan;Kim, Min-Gul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1753-1757
    • /
    • 2012
  • A new liquid chromatographic tandem mass spectrometric (LC-MS/MS) assay for the quantification of ginsenoside Rb1 in human plasma was developed and validated. The separation was performed on a Agilent C18 column ($4.6mm{\times}150mm$, particle size 5 ${\mu}m$) with a gradient elution of 0.1% formic acid in water and 0.1% formic acid in methanol and a flow rate of 0.9 mL/min. The analyte was determined using electrospray positive ionization mass spectrometry in the multiple reaction monitoring (MRM) mode (m/z 1131.714${\rightarrow}$365.303). Human plasma samples were extracted with acetone : water (50:50) by the liquid-liquid extraction method. The method was linear over the dynamic range of 10~500 ng/mL with a correlation coefficient of r=0.9995. The intra-and inter-day precision over the concentration range of ginsenoside Rb1 was lower than 5.8% (correlation of variance, CV), and the accuracy was between 96.0~104.6%. This LC-MS/MS assay of ginsenoside Rb1 in human plasma is applicable for quantification in a pharmacokinetic study.

Novel Synthesis of Imidazo[1,2-b]Pyrazoles and Their Fused Derivatives

  • Sherif, Sherif-M.;Hussein, Abdel-HaLeem-M.;El-kholy, Yehya-M.
    • Archives of Pharmacal Research
    • /
    • v.17 no.5
    • /
    • pp.298-303
    • /
    • 1994
  • 4-Arylazo-1H-pyrazol-3, 5-idimines 1a-c reacted with bromomalononitrile (2) to yield the corresponding imidazo[1, 2-b]pyrazoles 3a-c. The latter reacted with some active methylene compounds and with .alpha.-cinnamonitriles to afford the corresponding pyrazoloimidazopyridines 6, 8, 9 and 15, respectively. Compounds 3 reacted with each of formic acid, formamide, trichlo-roacetonitrile and with guanidine to yield the corresponding pyrazoloimidazopyrimidines 16-19 respectively.

  • PDF

Alcoholic Fermentation of Bokbunja (Rubus coreanus Miq.) Wine (복분자 발효주의 양조특성)

  • Choi, Han-Seok;Kim, Myung-Kon;Park, Hyo-Suk;Kim, Yong-Suk;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.543-547
    • /
    • 2006
  • In order to improve wine quality, the selection of yeast strain and of additives in the manufacture of Bokbunja (Rubus coreanus Miq.) wine was investigated. The chemical composition of the edible portions of Bokbunja fruits was 86.5% moisture, 0.2% crude protein, 0.9% crude fat, 6.6% crude fiber, 0.5% ash and $10^{\circ}Brix$ sugar, and was 2.99% fructose, 2.53% glucose and 0.07% sucrose in fruit extract. The predominant organic acids in the fruit were citric acid (14.57 mg/mL) and malic acid (2.24 mg/mL) with smaller amounts of shikimic, pyroglutamic and oxalic acid. During fermentation, citric and malic acid levels decreased, while formic and acetic acid were released. Saccharomyces cerevisiae KCCM 12224 (Sc-24) was more favorable for alcoholic fermentation of Bokbunja and the addition of 200 ppm of potassium metabisulphite to must was more efficient than other $SO_2$ sources with a higher overall acceptability score. Sc-24 increased alcohol production from 9.8 to 14.8% in a sugar concentration dependent manner $(18-28^{\circ}Brix)$. The color value of early stage Bokbunja must was improved by supplementing with Japanese apricot extract, but this did not influence the color value of Bokbunja wine after primary fermentation. The astringent taste of Bokbunja wine was reduced by removing the seed from the fruit. Sugar solution (50%, w/v) was used instead of sugar power to prevent the possibility of undissolved sugar due to insufficient mixing. This substitution did not influence sensory evaluation.

Quantitative Analyses for the Quality Evaluation of Salviae Miltiorrhizae Radix by HPLC

  • Fang, Zhe;Moon, Dong-Cheul;Son, Kun-Ho;Son, Jong-Keun;Min, Byung-Sun;Woo, Mi-Hee
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.251-258
    • /
    • 2010
  • In this study, quantitative analysis for the quality evaluation of Salviae Miltiorrhizae Radix using HPLC/UV was developed. For quantitative analysis, six major bioactive compounds were determined. The separation conditions employed for HPLC/UV were optimized using ODS $C_{18}$ column ($250{\times}4.6\;mm$, $5\;{\mu}m$) with gradient condition of A (1% formic acid in $H_2O$) and B (acetonitrile : methanol : formic acid = 100 : 75 : 1) as the mobile phase at a flow rate of 1.0 mL/min and a detection wavelength of 280 nm. These methods were fully validated with respect to the linearity, accuracy, precision and recovery. The HPLC/UV method was applied successfully to the quantification of six major compounds in the Salviae Miltiorrhizae Radix. The results indicate that the established HPLC/UV method is suitable for the quantitative analysis.

Mornitoring of non-steroidal anti-inflammatory drugs in livestock products (축산식품 중 비스테로이드성 항염증 약물의 잔류함량 모니터링)

  • Choi, Yoon-Hwa;Kim, Yoen-Joo;Shin, Bang-Woo;Lee, Jung-Hark
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.3
    • /
    • pp.285-289
    • /
    • 2011
  • This study was conducted to determine the content of non-steroidal anti-inflammatory drugs (NSAIDs) in meats available on the Korean markets. The analysis was carried out using following conditions; C18 column ($100{\times}2.1$ mm, 1.7 ${\mu}m$), mobile phase composed of DW (containing 0.1% formic acid): acetonitrile (containing 0.1% formic acid), binary pump at a flow rate of 0.3 ml/min and 5 ${\mu}l$ of injection volume, MS/MS detector with ESI positive mode. The calibration range of five NSAIDs showed linearity ($r^2{\geq}0.99$) at concentration range of 3.125~200 ${\mu}g$/kg. The recoveries in fortified muscle more than 78.7~100.3%. The detection limits for meloxicam, ketoprofen, flunixin, carprofen and tolfenamic acid were 3.5, 1.6, 1.7, 9.8 and 4.8 ${\mu}g$/kg, respectively. We also monitored NSAIDs residue in cattle muscle 51 samples. The test results, NSAIDs were all not founded.

Validation of LC-MS/MS method for determination of ginsenoside Rg1 in human plasma (인체 혈장 중 Ginsenoside Rg1의 정량을 위한 LC-MS/MS 분석법 검증)

  • Kim, Yunjeong;Han, Song-Hee;Jeon, Ji-Young;Hwang, Min-Ho;Im, Yong-Jin;Lee, Sun Young;Chae, Soo-Wan;Kim, Min-Gul
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • A sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the investigation of the ginsenoside Rg1 in human plasma. After addition of internal standard (digoxin), plasma was diluted with acetone and methanol (80:20), the supernatant was concentrated and analyzed by LC-MS/MS. The optimal chromatographic separation was achieved on an Agilent Eclipse XDB-C18 column ($4.6{\times}150mm$, $5{\mu}m$) with a mobile phase of 0.1% formic acid in water and 0.1% formic acid in methanol at a flow rate of 0.9 mL/min gradient mode. The standard calibration curve for ginsenoside Rg1 was linear ($r^2=0.9995$) over the concentration range 1~500 ng/mL in human plasma. The intra- and inter-day precision over the concentration range of ginsenoside Rg1 was lower than 7.53% (correlation of variance, CV), and accuracy exceeded 98.28%. This LC-MS/MS assay of ginsenoside Rg1 in human plasma is applicable for quantifying in the pharmacokinetic study.