• Title/Summary/Keyword: 6 High-Mill

Search Result 173, Processing Time 0.025 seconds

Effects of Preparation Conditions on Thermal and Electrical Properties of Oil-based Nanofluids for Transformer Application (변압기 냉각용 오일 기지 나노유체의 제조조건이 열 및 전기적 특성에 미치는 영향)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Jae-Myung
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.493-499
    • /
    • 2007
  • Oil-based nanofluids were prepared by dispersing nonconducting fibrous $Al_2O_3$ and spherical AlN nanoparticles in transformer oil. In this study, the effects of wet grinding and surface modification of particles on thermal and electrical properties of nanofluids were investigated. Grinding experiments were conducted with high-speed bead mill and ultrasonic homogenizer and nanoparticles were surface modified by oleic acid and polyoxyethylene alkyl acid ester(PAAE) in n-hexane or transformer oil, at the same time. It is obvious that the combination of nanoparticle, dispersant and dispersion solvent is very important for the dispersity of nanofluids. For nanofluids containing 1.0vol.% AlN particles in transformer oil, the enhancement of thermal conductivity was 11.6% compared with pure transformer oil. However, the electric-insulating property of AlN nanofluids was very low due to used dispersant itself. Therefore, the effect of the dispersant on thermal/electrical/physical properties of the transformer oil should be considered before selecting a proper dispersant.

A Study on Microstructure of Vanadium-Aluminum Alloy by Mechanical Alloying (기계적합금화법(機械的合金化法)에 의(依)한 V-Al합금(合金)의 미세조직(微細組織) 변화(變化)에 관(關)한 연구(硏究))

  • Choi, Woon;Kim, Ha-Young;Nam, Seoung-Eui
    • Journal of Korea Foundry Society
    • /
    • v.11 no.6
    • /
    • pp.455-462
    • /
    • 1991
  • The formation of brittle intermetallic compound such as $VAl_3$ tends tp lower the toughness of V-Al alloys. Also, due to the high melting point of vanadium, it is difficult to make that alloy by previous ingot metallurgy method. To depress the technique has been adopted. The effect of particle size and milling time on the phase has been thoroughly studied. For mechanical alloying, SPEX mixed/mill has been used. The milling time and the composition of V and Al are varied to find the optimum condition of forming amorphous phase. The X-Ray Diffrection pattern, microstructure detection, microhandess test, experiments are carried out to analyze MA product. When the final step is reached, no lamellar-structure is detected. The steady state condition is observed after 8 hours and 10 hours milling for 15wt.%Al and 30wt.%Al alloy, respectively. The microhardness continuously increases up to 10 hours after then it remains constant.

  • PDF

Effect of mechanical alloying on the microstructural evolution of a ferritic ODS steel with (Y-Ti-Al-Zr) addition processed by Spark Plasma Sintering (SPS)

  • Macia, E.;Garcia-Junceda, A.;Serrano, M.;Hong, S.J.;Campos, M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2582-2590
    • /
    • 2021
  • The high-energy milling is one of the most extended techniques to produce Oxide dispersion strengthened (ODS) powder steels for nuclear applications. The consequences of the high energy mill process on the final powders can be measured by means of deformation level, size, morphology and alloying degree. In this work, an ODS ferritic steel, Fe-14Cr-5Al-3W-0.4Ti-0.25Y2O3-0.6Zr, was fabricated using two different mechanical alloying (MA) conditions (Mstd and Mact) and subsequently consolidated by Spark Plasma Sintering (SPS). Milling conditions were set to evidence the effectivity of milling by changing the revolutions per minute (rpm) and dwell milling time. Differences on the particle size distribution as well as on the stored plastic deformation were observed, determining the consolidation ability of the material and the achieved microstructure. Since recrystallization depends on the plastic deformation degree, the composition of each particle and the promoted oxide dispersion, a dual grain size distribution was attained after SPS consolidation. Mact showed the highest areas of ultrafine regions when the material is consolidated at 1100 ℃. Microhardness and small punch tests were used to evaluate the material under room temperature and up to 500 ℃. The produced materials have attained remarkable mechanical properties under high temperature conditions.

Developmental Stage and Temperature Influence Elongation Response of Petiole to Low Irradiance in Cyclamen persicum (저광도에 대한 시클라멘 엽병의 발육 단계 및 온도 조건별 신장 반응)

  • Oh, Wook;Kim, Ki-Sun
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.719-727
    • /
    • 2010
  • Reduced irradiance promotes shoot elongation depending on developmental stage and environmental factors and decreases plant quality in $Cyclamen$ $persicum$ Mill. To determine the petiole elongation responses to low irradiance, 'Metis Scarlet Red' cyclamen at different developmental stages [juvenile (5-6 unfolded leaves), transitional (1-3 visible flower buds), or mature (1-3 elongating peduncles)] was grown in growth modules at 60 (low light, LL) or 240 (high light, HL) ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD within the growth chambers at different temperatures [16/12 (low temperature, LT), 22/18 (medium temperature, MT), or 28/$24^{\circ}C$ (high temperature, HT) (day/night)]. In Experiment I, juvenile plants were either kept in an LL or HL module during the entire treatment of 4 weeks or were transferred to the other module at 1, 2, or 3 weeks after treatment in an MT chamber. In Experiment II, juvenile, transitional, or mature plants were moved to the HL module at 0, 3, 6, 9, or 12 days after being placed in the LL module at the MT chamber and grown for 21 days. In Experiment III, transitional plants were moved to the HL module at 0, 3, 6, 9, or 12 days after being placed in the LL module at the LT, MT, or HT chambers. As the exposure duration to LL increased from 0 to 4 weeks or from 0 to 12 days, petiole length and plant height increased at all temperatures and developmental stages. In Experiment I, the exposure to LL during the latter period, rather than the early period, increased elongation rate. In Experiment II, petiole elongation in transitional plants was more sensitive to LL than juvenile or mature plants during the early period of the treatment for 12 days. In Experiment III, petiole length increased with increasing temperature and exposure duration to LL. Petiole elongation rate at HT increased rapidly from the beginning of LL exposure as compared to LT. Increase of $6^{\circ}C$ in temperature had the similar effect to LL exposure for 3 days in petiole elongation. To conclude, transitional cyclamen under higher temperatures responds more immediately to low irradiance and elongates its petioles.

Preparation of WO3-TiO2 Photocatalyst and Evaluation of Its Photo-activity in the Visible Light Range (가시광 활성 WO3-TiO2 복합체 광촉매의 제조 및 이의 특성 평가)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.474-478
    • /
    • 2013
  • The most general photocatalyst, $TiO_2$ and $WO_3$, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with $TiO_2$ and $WO_3$. In the $TiO_2-WO_3$ composite, $WO_3$ absorbs visible light creating excited electrons and holes while some of the excited electrons move to $TiO_2$ and the holes remain in $WO_3$. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of $TiO_2-WO_3$ composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of $TiO_2(4)$ and $WO_3(6)$ shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.

Development of MgH2-Ni Hydrogen Storage Alloy Requiring No Activation Process via Reactive Mechanical Grinding

  • Song, Myoung Youp;Kwak, Young Jun;Lee, Seong Ho;Park, Hye Ryoung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.949-953
    • /
    • 2012
  • $MgH_2$ was employed as a starting material instead of Mg in this work. A sample with a composition of 94 wt% $MgH_2-6$ wt% Ni (called $MgH_2-6Ni$) was prepared by reactive mechanical grinding. The hydriding and dehydriding properties were then examined. An $MgH_2-Ni$ hydrogen storage alloy that does not require an activation process was developed. The alloy was prepared in a planetary ball mill by grinding for 4 h at a ball disc revolution speed of 250 rpm under a hydrogen pressure of about 12 bar. The sample absorbed 3.74 wt% H for 5 min, 4.07 wt% H for 10 min, and 4.41 wt% H for 60 min at 573 K under 12 bar $H_2$, and desorbed 0.93 wt% H for 10 min, 1.99 wt% H for 30 min, and 3.16 wt% H for 60 min at 573 K under 1.0 bar $H_2$. $MgH_2-6Ni$ after reactive mechanical grinding contained ${\beta}-MgH_2$ (a room temperature form of $MgH_2$), Ni, ${\gamma}-MgH_2$ (a high pressure form of $MgH_2$), and a very small amount of MgO. Reactive mechanical grinding of Mg with Ni is considered to facilitate nucleation, and to reduce the particle size of Mg. $Mg_2Ni$ formed during reactive mechanical grinding also increases the hydriding and dehydriding rates of the sample.

A Study on the Analysis of Isothiazolinone Components by High Performance Liquid Chromatography (고성능액체크로마토그래피에 의한 Isothiazolinone Components의 분석에 관한 연구)

  • 김종규;이덕희
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.102-105
    • /
    • 1992
  • Introduction : Isothiazolinone product is one of new preservatives used in cooling tower, paper mill, and general industrial waters.l) It is also effective in controlling bacteria and fungi in the manufacture and storage of dispersed pigments, such as kaolin clays, titanium dioxide, calcium carbonate and others\ulcorner Its broad-spectrum activity, excellent physical and chemical compatibility with anionic, nonionic and cationic surfactants and most organic and inorganic compounds and low toxicity at recommended use levels provide formulators with an effective, economical, and environmentally acceptable alternative to other commercial biocides. It dose not contain or generate formaldehyde and is easy to formulate (1.5% solution is supplied as an aqueous solution), so that it gains advantage over the other preservatives. The active ingredients of the isothiazolinone product are unchlorinated compound (2-methyl-4-isothiazolin-3-one) and chlorinated one (5-chloro-2-methyl-4-isothiazolin-3-one). Methods preferred for the analysis of preservatives are chromatographic methods, especially high performance liquid chromatograph (HPLC). Although several methods were satisfactory in respect to separation, no offical method has been published for the isothiazolinone components. This study was performed to search for an alternative method in order to show flexible operating conditions of HPLC and to reduce assay time.

  • PDF

Absorption Properties of Thin Permalloy-Rubber Absorbers in Mobile Telecommunication Frequency Bands (Permalloy를 이용한 이동통신주파수 대역용 박형 전파흡수체의 제조 및 특성 연구)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.115-119
    • /
    • 2008
  • The raw materials of permalloy were processed the ball-mill for 30 hours and the shape of permalloy particles was changed from sphere to flake type, which was observed using scanning electron microscope. The complex permittivity and permeability spectra and reflection loss of permalloy-rubber composite was measured using Network Analyzer in order to investigate the relationship between the microwave absorption and the material constants. The flake type permalloy-rubber composite showed high reflection loss, which was due to the high complex permittivity and permeability. Also, the matching frequency shifted toward lower frequency range with microwave absorber thickness, and the maximum reflection loss of -6.1 dB was observed in $1.65\;GHz{\sim}1.86\;GHz$ for a 1.3 mm thickness.

Variety, Cutting Date and Physiological Functionality for Production of Leaves in Goji Berry (Lycium chinense Mill.) (구기자 잎 생산에 알맞은 품종, 예취시기 및 생리활성 평가)

  • Ju, Jung-Il;Paik, Seung-Woo;Yun, Tug-Sang;Park, Young-Chun;Lee, Bo-Hee;Son, Seung Wan
    • Korean Journal of Plant Resources
    • /
    • v.33 no.5
    • /
    • pp.436-445
    • /
    • 2020
  • Goji berry (Lycium chinense Mill.) is one of medicinal plants. Its leaves has been used to manufacture the functional foods by replacing the dried-fruit because of low production costs. In order to produce the leaves of uniform quality, continuous selection and the establishment of cultivation techniques were required. Among the eleven recommended cultivars, 'Myeongan' showed high yielding and rapid regeneration after cutting. The dried-leaf yield was linearly increased from 106 kg/10a on May 16 to 287 kg/10a on June 20. An appropriate cutting date and cutting length (about 60-70 cm) was important factors for its efficient regeneration. The late cutting times were not suitable due to difficulties during plant harvesting because of stem rigidity and thorn generation. The betaine content of leaves ranged from 1.43 ~ 2.63% and significantly affected by the varieties and the cutting dates. The main physiological functionality of leaf was Angiotesin-1-converting enzyme (ACE) inhibitory activity, representing the anti-hypertensive. The other physiological functionalities, XOD inhibitory activity, antioxidant activity, tyrosinase inhibitory activity, SOD-like activity, α-glucosidase inhibitory activity and fibrinolytic activity, were not detected or less than 20%.

Cardiovascular Biofunctional Activity and Antioxidant Activity of Gugija (Lycium chinensis Mill) Species and Its Hybrids (구기자 품종과 교배종의 부위별 심혈관관련 질환 예방 기능성 및 항산화 활성비교)

  • Park, Won-Jong;Lee, Bong-Chun;Lee, Ju-Chan;Lee, Eun-Na;Song, Jung-Eun;Lee, Dae-Hyung;Lee, Jong-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.391-397
    • /
    • 2007
  • To develop new high valuable Gugija (Lycium chinensis), biofunctionalities of Gugija standard species and its hybrids were investigated and compared with each water extracts and methanol extracts from Lycii Fructus, Lycii Folium and buds and Lycii Cortex Radicis. Among various biofunctionalities of Gugija standard species, antioxidant activity was showed the highest in methanol extracts from buds of Cheongwoon species (93%) and antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activity was 84.1% in the water extracts from Lycii Cortex Radicis of Cheongyang NO.7. Futhermore, methanol extracts from Lycii Cortex Radicis of Myungan A-2 hybrid showed 93.1% of antioxidant activity and 96.9% of ACE inhibitory activity was also showed in the methanol extracts from Lycii Fructus of DO148-72(A11) hybrid. However, fibrinolytic activity and anticholesteromia HMG-CoA reductase inhibitory activity were weak or not detected in almost of Gugija standard species and its hybrids. Therefore, we finally selected Cheongwoon Gugija standard species (buds) and Myungan A-2 hybrid (Lycii Cortex Radicis) as good antioxidant sources and also DO148-72 (A11) hybrid (Lycii Fructus) as excellent antihypertensive ACE inhibitior sources for manufacturing functional food product.