• 제목/요약/키워드: 6 DOF Modeling

검색결과 66건 처리시간 0.021초

정수중을 활주하는 고속선의 6자유도 운동 모델링 및 시뮬레이션 (Modeling and Simulation of the 6 DOF Motion of a High Speed Planing Hull Running in Calm Sea)

  • 윤현규;강남선
    • 대한조선학회논문집
    • /
    • 제53권1호
    • /
    • pp.10-17
    • /
    • 2016
  • When a planing hull straightly runs and turns, its floating position and pitch angle are changed depending on its speed, and large transient motion happens. In this paper, six degrees of freedom(6 DOF) equations of motion, which could simulate the motion of a planing hull, are established. Static and dynamic forces in vertical plane are modeled using pre-calculated displacements and metacentric heights depending on various draft, lift under bottom, and vertical damping coefficients which are used to tune the final motion. Hydrodynamic coefficients in horizontal plane at various equilibrium state are calculated by using Lewandowski's empirical formula and the speed-dependent equilibrium state are calculated beforehand by Savitsky's formula. The speed effects are considered by curve-fitting the coefficients at various speed to the polynomials. Accelerating, decelerating and backing, turning, and zig-zag are simulated and compared with the sea trial results, and it is confirmed that the speed reduction, roll, and pitch during such maneuvers of sea trial and simulation are well consistent.

비선형 강인 내부루프 보상기를 이용한 6자유도 원격조종 수중로봇의 선형 모델예측 제어 (Linear Model Predictive Control of 6-DOF Remotely Operated Underwater Vehicle Using Nonlinear Robust Internal-loop Compensator)

  • 김준식;최유나;이동철;최영진
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.8-15
    • /
    • 2024
  • This paper proposes a linear model predictive control of 6-DOF remotely operated underwater vehicles using nonlinear robust internal-loop compensator (NRIC). First, we design a integrator embedded linear model prediction controller for a linear nominal model, and then let the real model follow the values calculated through forward dynamics. This work is carried out through an NRIC and in this process, modeling errors and external disturbance are compensated. This concept is similar to disturbance observer-based control, but it has the difference that H optimality is guaranteed. Finally, tracking results at trajectory containing the velocity discontinuity point and the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

Dynamics Modeling and Behavior Analysis of Underwater Glider System

  • Nam, Keon-Seok;Kim, Donghee;Choi, Hyeung-Sik;Lee, Shin-je;Kim, Joon-Young
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.25-31
    • /
    • 2017
  • Generally, underwater gliders do not have separate propellers for their forward movement. They derive a propulsive force due to the difference between their buoyancy and gravity. The attitude of an underwater glider is controlled by changing the relative position of the buoyancy center and mass center. In this study, we derived nonlinear 6-DOF dynamic and mathematical models for the motion controller and buoyancy controller. Using these equations, we performed dynamic underwater glider simulations and verified the suitability of the design and dynamic performance of the proposed underwater glider.

An efficient modeling technique for floor vibration in multi-story buildings

  • Lee, Dong-Guen;Ahn, Sang-Kyoung;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.603-619
    • /
    • 2000
  • Analysis of a framed structure for vertical vibration requires a lot of computational efforts because large number of degrees of freedom are generally involved in the dynamic responses. This paper presents an efficient modeling technique for vertical vibration utilizing substructuring technique and super elements. To simplify the modeling procedure each floor in a structure is modeled as a substructure. Only the vertical translational degrees of freedom are selected as master degrees of freedom in the inside of each substructure. At the substructure-column interface, horizontal and rotational degrees of freedom are also included considering the compatibility condition of slabs and columns. For further simplification, the repeated parts in a substructure are modeled as super elements, which reduces computation time required for the construction of system matrices in a substructure. Finally, the Guyan reduction technique is applied to enhance the efficiency of dynamic analysis. In numerical examples, the efficiency and accuracy of the proposed method are demonstrated by comparing the response time histories and the analysis time.

Experimental Framework for Controller Design of a Rotorcraft Unmanned Aerial Vehicle Using Multi-Camera System

  • Oh, Hyon-Dong;Won, Dae-Yeon;Huh, Sung-Sik;Shim, David Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.69-79
    • /
    • 2010
  • This paper describes the experimental framework for the control system design and validation of a rotorcraft unmanned aerial vehicle (UAV). Our approach follows the general procedure of nonlinear modeling, linear controller design, nonlinear simulation and flight test but uses an indoor-installed multi-camera system, which can provide full 6-degree of freedom (DOF) navigation information with high accuracy, to overcome the limitation of an outdoor flight experiment. In addition, a 3-DOF flying mill is used for the performance validation of the attitude control, which considers the characteristics of the multi-rotor type rotorcraft UAV. Our framework is applied to the design and mathematical modeling of the control system for a quad-rotor UAV, which was selected as the test-bed vehicle, and the controller design using the classical proportional-integral-derivative control method is explained. The experimental results showed that the proposed approach can be viewed as a successful tool in developing the controller of new rotorcraft UAVs with reduced cost and time.

트랜스퍼 크레인의 모델링 및 고정도 주행제어기 설계에 관한 연구 (Modelling and Accurate Tracking Controller Design of A Transfer Crane)

  • 김영복;서진호;이권순
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.114-122
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in a limited time. To achieve this objective, many strategies have been introduced and applied. If we consider the automated container terminal, it is necessary that the cargo handling equipment is equipped with more intelligent control systems. From the middle of the 1990s, an automated rail-mounted gantry crane (RMGC) and rubber-tired gantry crane (RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, equipment like CCD cameras and sensors have been mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes that make the cargo handling be performed effectively in the yards. For this plant, we ought to consider modeling, tracking control, anti-sway system design, skew motion suppressionand complicated motion control and suppressing problems. In this paper, the system modeling and a tracking control approach are discussed, based on a two-degree-of-freedom (2DOF) servo-system design. From the simulation results, the good control performance of the designed control system is evaluated.

무인기의 정밀 낙하산 착륙을 위한 전개지점 결정 (Deploy Position Determination for Accurate Parachute Landing of a UAV)

  • 김인한;박상혁;박우성;유창경
    • 한국항공우주학회지
    • /
    • 제41권6호
    • /
    • pp.465-472
    • /
    • 2013
  • 본 논문에서는 요구 위치에 정밀 착륙을 위한 낙하산 전개지점 선정 기법을 제안한다. 무인기-낙하산 시스템을 위해 9-DOF 운동 모델을 구성하였고, 신경회로망을 학습시키기 위한 입출력 데이터 셋을 구성하였다. 입력 데이터 셋은 현재 항공기 위치, 속도정보 및 바람 정보로 구성되어 있고, 출력 데이터 셋은 9-DOF 운동 모델을 시뮬레이션 하여 획득한 착륙 위치 정보이다. 이를 이용하여 nonlinear function approximator를 구성함으로써 현재 위치로부터 상대적인 착륙 지점을 예측할 수 있고, 예측된 착륙 지점과 요구 착륙 지점과의 상대적인 거리 오차를 계산하여 이를 보상해줌으로써 낙하산 전개 지점을 결정할 수 있다.

Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

  • Park, Jinmo;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권2호
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.

국가공역에서의 유·무인기 혼합운용을 위한 시뮬레이션엔진 개발 및 검증 (Development and Validation of Manned and Unmanned Aircraft Simulation Engine for Integrated Operation in NAS)

  • 김동현;김준형;윤석준
    • 한국항공우주학회지
    • /
    • 제44권5호
    • /
    • pp.423-430
    • /
    • 2016
  • 최근 국가공역 내 유 무인항공기 혼합운용 시 충돌 감지 및 회피, 통신두절 등의 다양한 문제가 예상된다. 따라서 본 연구에서는 EUROCONTROL의 BADA와 NASA의 성능 데이터를 기반으로 유인기와 무인기 혼합운용 및 ATC/ATM 시뮬레이션을 동시에 수행할 수 있도록 필요한 환경 구축과 동적 모델링을 수행하였다. 또한 구성한 모델의 검증을 위하여 6-DOF 비행모델과 세그먼트별 동일한 입력값으로 시뮬레이션을 수행하고, RMSE결과 비교를 통해 구성한 모델의 적합함을 확인하였다.

Development of a Simulator of a Magnetic Suspension and Balance System

  • Lee, Dong-Kyu;Lee, Jun-Seong;Han, Jae-Hung;Kawamura, Yoshiyuki;Chung, Sang-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.175-183
    • /
    • 2010
  • The increased demand for a higher performing magnetic suspension and balance system (MSBS) resulted in an increase in costs for the efforts necessary for achieving an improved MSBS. Therefore, MSBS performance should be predicted during the design in order to reduce risk. This paper presents the modeling and simulation of an MSBS that controls 6-degree of freedom (DOF) of an aerodynamic body within the MSBS. Permanent magnets and electromagnets were modeled as coils, and this assumption was verified by experimental results. Finally, an MSBS simulator was developed, predicting that the MSBS is able to contain the model within a bounded region as well as measure external forces acting on the body during wind tunnel tests.