• Title/Summary/Keyword: 6세대

Search Result 2,035, Processing Time 0.026 seconds

Studies on the Inheritance of Heading Date in Wheat(Triticum aestivum L. em Thell) (소맥(Triticum aestivum L. em Thell)의 출수기 유전에 관한 연구)

  • Chang-Hwan Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.15
    • /
    • pp.1-31
    • /
    • 1974
  • Introducing genes for earliness of wheat varieties is important to develop early varieties in winter wheat. In oder to obtain basic informations on the response of heading to the different day length and temperature treatments and on the inheritance of heading dates, experiments were conducted at the field and greenhouse of the Crop Experiment Station, Suwon. Varieties used in this experiments were, early variety Yecora F70, medium varieties Suke #169, Parker and Yukseung #3, and late varieties Changkwang, Bezostaia, Sturdy and Blueboy. The parents and F$_1$s of partial diallel crosses of above eight varieties were subjected the following four different treatments; 1. high temperature and long day, 2. high temperature and short day, 3. low temperature and long day, and 4. low temperature and short day. The same materials were grown also in field condition. Parents, F$_1$ and F$_2$ generation were grown also in both greenhouse under high temperature and short day and in field. The results obtained were summarized as follow: 1. No effects of temperature and daylength on the number of leaves on the main stem were found when -varieties were vernalized. The number of main stem leaves were fewer for spring type of varieties than for winter type of varieties. 2. The effects of temperature and daylength on the days to flag leaf opening were dependent on the speed of leaf emergence. The speed of leaf emergence were faster for lower leaves than for upper leaves. 3. The response to short day and long day (earliness of narrow sense) of varieties were found to be direct factor responsible to physiology of heading dates in vernalized varieties. Great difference of varieties to heading date was found in high temperature and short day treatment, but less differences were found in high temperature and long day, low temperature and long day and low temperature and short day treatments respectively. The least varietal difference for heading dates was found in the field condition. 4. Changkwang and Parker were found to be the most sensitive to short day treatment (photosensitive) and the heading of these varieties were delayed by short day treatment. No great varietal differences were found among other varieties. 5. Varietal differences of heading dates due to daylength were greater in high temperature than in low temperature. 6. Varietal differences of heading dates due to temperature were not great. but in general the heading dates of varieties were faster under high temperature than under low temperature. 7. Earliness of heading dates was due to partial dominance effect of genes involved in any condition. The degree of dominance was greater under short day than under long day treatment. 8. The varietal differences of heading date under high temperature and long day were due to earliness or narrow sense (response to long day) of varieties. The degree of dominance was greater for Yecora F70, spring type than for other winter type of varieties. No differences or less differences of degree of dominance was found among winter type of varieties. The estimated number of effective factor concerned in the earliness of narrow sense was one pair of allele with minor genes. 9. The insensitivity of varieties to short day treatment in heading dates was due to single dominant gene effect. Under the low temperature the sensitivity of varieties to short day treatment was less apparent. 10. The earliness of short day and long day (earliness of narrow sense) sensitivities of varieties appearea to be due to partial dominance of earliness over lateness. In strict sense, the degree of the dominance should be distinguished. 11. Dominant gene effects were found for the thermo-sensitivity of varieties, and the effect was less, significant than the earliness in narrow sense. 12. One pair of allele, ee and EE, for photosensitivity was responsible for the difference in the heading dates between Changkwang and Suke #169. Two pairs of alleles, ee, enen and EE, EnEn. appeared to be responsible for the difference between Changkwang and Yecora F70. The effects of EE and EnEn were, additive to the earliness and the effects of EE were greater than EnEn under short day. However, the effects of EE were not evident in long day but the effects of EnEn were observed in long day. 13. Two pairs of dominant alleles for the earliness were estimated from the analysis of F$_1$ diallels in the field but the effects of these alleles in F$_2$ were not apparent due to low temperature and short day treatment in early part of growth and high temperature and long day treatment in later part of growth. The F$_2$ population shows continuous variation due to environmental effects and due to other minor gene effects. 14. The heritabilities for heading dates were ranged from 0.51 to 0.72, indicating that the selection in early generation might be effective. The extent of heritability for heading dates varied with environments; higher magnitude of heritability was obtained in short day treatment and high temperature compared with long day and low temperature treatments. The heritabilities of heading date due to response to short day were 0.86 in high temperature and 0.76 in low temperature. The heritabilities of heading date due to temperature were not significantly high. 15. The correlation coefficients of heading dates to the number of grains per spike, weight of 1, 000 grains. and grain yield were positive and high, indicating the difficulties of selections of high yielding lines from early population. But no significant correlation coefficient was obtained between the earliness and the number of spikes, indicating the effective selection for high tillering from early varieties for high yielding.

  • PDF

STUDIES ON THE DIMORPHISM AND FERTILITY OF PERSICARIA JAPONICA (MEISSNER) GROSS ET NAKAI (Persicaria Japonica (MISSNER) Gross et Nakai의 이형화와 수정력에 관한 연구)

  • HARN, Chang Yawl
    • Journal of Plant Biology
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 1960
  • HARN, Chang Yawl : Studies on the dimorphism and Fertility of Persicaria japonica (MEISSNER) Gross et Nakai. Kor Jour. Bot. 3(I) 1-15 1960 Numerous investigations, since the works of DARWIN, have been made regarding the heterostylous plants by JOST (1907), CORRENS (1924), LAIBACK (1924), LEWIS (1943), and many others. Studies on the heterostylous Polygomum, however, were not reported except for the buckwhent, Fagopyrum esculentum, which was investigated by SCHOCH-BODMER (1930), EAST (1934), FROLOVA & Co-Workers (1946), MORRIS (1947, 1951) TATEBE (1949, 1951, 1953), present author (1957), and others. It is because no heterostylous species, besides buckwheat, have been known to exist in the Polygonum family. The author, during his studies on both heterostylism and fertility of Polygonaceae, has found that the species, persicaria japonica (Meissner) Gross et Nakai, is not diecious as has been known in taxonomy, but in reality beterostylous both morphologically and physiologically. It was found that this plant, regarded by taxonomist, as a male plant setting no seed, actually set seed (botanical fruit) when legitimate combination was made. Since his brief report on the dimorphic phenomens of this plant in 1956, the author's further research on the manner of fertilization has revealed that this species is a peculiar type whose dimorphism has undergone extreme specialization structurally and physiologically, the short-styled individual behaving in nature as a male plant and the long-styled individual, as female, whereas in controllled pollination the plant shows highly differentiated typical dimorphism. When compared with the other dimorphous species of this family, F. esculentum and P. sentiosa. it has been clarified that these three species differ in the degree of differentiation of their dimorphism morphologically and physiologically. That is, P. japonica has developed such a high specialization as to mislead the taxonomists, while P. senticosa shows almost no noticeable difference between long- and shortstyled individuals retaining most of the inherent physiological character cmmon to the genus except for the fact that it has two forms of flowers. F. esculentum appears to have taken the intermediate position in every respect. The result obtained in the present experiment are summarized as follows: 1) P. japonica has two kinds of individuals, one long style-short stamened; the other, short style-long stamened. The floral structure of this plants shows typical characteristics of dimorphic heterostylism. The differentiation between the two forms of flower has proceeded so highly both in primary and secondary difference of flower structure that this may be regarded as the most specialized form of dimorphism. 2) The differences of floral structure between the long and short styled individuals are remarkable compared with the other dimorphic species of the family. 3) The stamens of long styled plants show the sign of deteriolation whereas those of the short styled flower are well-developed. 4) When legitimate combinations are made, both L- and S-styled individuals are fertilized well and set seed (fruit), while in the illegitimate combination no fertilization and seed setting occur. Physiologically this species exhibits the typical behavior of dimorphic plants. 5) The self-fertile character, so common in other species of the other non-heterostyle Polygonum family, has disappeared completely. 6) Under natural conditions, no or few seed setting is observed in short styled individuals that behave as if they were male plants. 7) In hand pollination, the combination of both $L{\times}S$ and $S{\times}L$ alike yield relatively good fertility and seed-formation, the behavior of short styled individuals in artificial pollination differing remarkably from that in nature. 8) Under controlled pollination, $L{\times}S$ combination sets far more seed than in the combination of $S{\times}L$. In the S-styled individuals, the fertilized flower has the tendency of its seed more readily falling off in every stage of seed development than in the L-styled individuals. 9) The behaviors of pollen tubes just parallels the results of fertility test. That is, in the illegitimate combination, L-selfed, $L{\times}L$, S-selfed, and $S{\times}S$, the growth of pollen tubes is checked in the style, while in legitimately combined $L{\times}S$ and $S{\times}L$, the pollen tubes grow well reaching the ovaries within 40-50 minutes after pollination. The response of short styled individuals, known as male plant among taxonomists, is identical, as far as behavior fo pollen tube growth and fertilization are concerned, to that of long styled individuals, the so-called female plant. 10) The pollen grains from the short-styled plants are complete and fertile, whereas 70% of those of L-styled are found to be abortive, i.e., empty contents. 11) The remaining 30% of pollen of L-plant shows varied degree of stainability when stained with iron-aceto-carmine......mostly light red, while the pollen grains of S-style individuals are dark brown indicating complete fertility and viability. 12) The abundance of sterile pollen in L-styled and the nature of seed-dropping which occurs in S-styled individuals appear to be the main causes why the short styled individuals bear no seed in nature. Under controlled legitimate union, $S{\times}L$, the careful and elaborate pollination would give the S-styoled flowers the opportunities to receive the fertile pollens, though few in number, from L-styled plant, thus enabling S-plant to bear seed. 13) This species is not dioecious as is regarded by taxonomists, but typical dimorphic plant which has so highly specialized in floral structures and funcitons that the long-styled plant behaves just like a female individual; and the short-styled, like a male.

  • PDF

Studies on the Breeding of the Response to short photoperiod, Fiber weight, and Qualitative characters and of the Associations Among these characters in Kenaf (섬유용양마의 육종에 관한 연구 -단일반응성과 섬유종의 유전 및 연소)

  • Johng-Moon Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.4 no.1
    • /
    • pp.115-124
    • /
    • 1968
  • It was shown that the most desirable characters for kenaf are high-fiber weight and moderately early maturity. Therefore, the objectives of this research on this crop is to find varieties possessing these characteristics. The experiments covered in this report provided new information relative to segregation, mode of inheritance, estimate of the number of genes involved in fiber weight and their response to short day length of 10 hours and the qualitative characters, such as, color of stem, capsule, petiole and shape of leaves. The associations which exist among these characters are also indicated. Fiber weight per plant, days to flowering, Stem color, Petiole color, Capsule color, and shape of leaves were studied in parental, $F_1$.$F_2$and backcross populations of a cross between Dashkent, a low-fiber weight but early maturing kenaf variety, and G 38 F-1, a high-fiber weight but late maturing kenaf variety. Crosses were made using the varieties, Dashkent and G 38 F-1 as parents. The Dashkent parent had the following characteristics: green stems, capsules and petioles and lobed shaped leaves; 105.8234 mean-days to flowering in the field, and 106.9222 mean-days under 10 hours short day treatment. The other parent, G 38 F-1 had red stems yellow capsules and red petioles and unlobed shaped leaves; 149.8921 mean-days to flowering in the field, and 62.3684 mean-days under 10 hours short day treatment. Both of the parents, $F_1$, $F_2$, $BC_1$ ($F_1$ X Dashkent, ) and $BC_2$($F_1$ ${\times}$ G38F-1) of the kenaf cross were grown at the Crops Experiment Station, Suwon, Korea in 1965. Color of stems, petioles and capsules, and shape of leaves were noted to be simply inherited as a single factor. Red stem color was dominant over green stem color, red petiole color was dominant over green petiole, lobed shaped leaves were dominant over unlobed shaped leaves and yellow capsules were dominant over green capsule. It was, also, noted that the factor for color of petiole was linked with the factor for shape of leaf with a 11.9587 percent recombination value, however no interaction or linkage were found among the color of stem and capsule color. Using Powers partitioning method, theoretical means and frequency distributions for each population, the days to flowering were calculated with the assumption that two gene pairs were involved. The values obtained fitted the theoretical values. In general this would indicate that Dashkent and G 38 F -1 were differentiated by two gene pairs. Heritability values were calculated as the percent of additive genetic variance. Heritability value of days to flowering, 89.5% in the broad sense and 79.91% in the narrow sense, indicated that the selection for this character would be effective in relatively early generations. Particularly, high positive correlations were found between days to flowering and the color of petioles and shape of leaves. However, there was no relation between days to flowering and capsule color nor between these and stem color. On the basis of the results of this experiment there is evidence that the hereditary factor for shape of leaves and the color of petioles is linked with an effective factor or factors for the characters of days to flowering. The association was sufficiently close to offer a possible simple and efficient means of selection for moderately early mat. uring plants by leaf shape and petiole color selection. Again using Powers partitioning method the frequency distribution for each population to the fiber weight were calculated with the assumption that two gene pairs, AaBb, were involved. Both phenotypic and genotypic dominance were complete. The obtained value did not agree with the theoretical value for $F_2$ and $BC_1$ ($F_1$ ${\times}$ Dashkent.) It seems that Dashkent and G 38 F-1 were differentiated by two major gene pairs but some the other minor genes are necessary. It is certain that the hereditary factor for shape of leaves and color of petioles is linked with an effective factor or factors for fiber weight. Also, high. yielding plants with moderately early maturity were found in the $F_2$ population. Thus, simultaneous selection for high-fiber yield and moderately early maturing plants should be possible in these populations. Phenotypic and genotypic correlation coefficients between fiber weight per plant and days to flowering, stem height and stem diameter were calculated. In general, genotypic correlations are higher than the phenotypic correlation. The highest correlation is found between stem height and fiber weight per plant (0.7852 in genotypic and 0.4103 in phenotypic) and between days to flowering and fiber weight per plant (0.7398 in genotypic and 0.3983 in phenotypic.) It was also expected that the selection of high stem height and moderately early maturing plants were given the efficient means of selection for high fiber weight.

  • PDF

Spatial Distribution of Aging District in Taejeon Metropolitan City (대전광역시 노령화 지구의 공간적 분포 패턴)

  • Jeong, Hwan-Yeong;Ko, Sang-Im
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.2
    • /
    • pp.1-19
    • /
    • 2000
  • This study is to investigate and analyze regional patterns of aging in Taejeon Metropolitan city-the overpopulated area of Choong-Cheong Province-by cohort analysis method. According to the population structure transition caused by rapid social and economic changes, Korea has made a rapid progress in population aging since 1970. This trend is so rapid that we should prepare for and cope with aging society. It is not only slow to cope with it in our society, but also there are few studies on population aging of the geographical field in Korea. The data of this study are the reports of Population and Housing Censuses in 1975 and 1985 and General Population and Housing Censuses with 10% sample survey in 1995 taken by National Statistical Office. The research method is to sample as the aging district the area with high aged population rate where the populations over 60 reside among total population during the years of 1975, 1985, 1995 and to sample the special districts of decreasing population where the population decreases very much and the special districts of increasing population in which the population increases greatly, presuming that the reason why aged population rate increases is that non-elderly population high in mobility moves out. It is then verified and ascertained whether it is true or not with cohort analysis method by age. Finally regional patterns in the city are found through the classification and modeling by type based on the aging district, the special districts of decreasing population, and the special districts of increasing population. The characteristics of the regional patterns show that there is social population transition and that non-elderly population moves out. The aging district with the high aged population rate is divided into high-level keeping-up type, relative falling type below the average of Taejeon city in aging progress, and relative rising type above the average of the city. This district can be found at both the central area of the city and the suburbs because Taejeon city has the characteristic of over-bounded city. But it cannot be found at the new built-up area with the in-migration of large population. The special districts of decreasing population where the population continues to decrease can be said to be the population doughnuts found at the CBD and its neighboring inner area. On the other hand, the special districts of increasing population where the population continues to increase are located at the new built-up area of the northern part in Taejeon city. The special districts of decreasing population are overlapping with the aging district and higher in aged population rate by the out-migration of non-elderly population. The special districts of increasing population are not overlapping with the aging district and lower in aged population rate by the in-migration of non-elderly population. To clarify the distribution map of the aging district, the special districts of decreasing and increasing population and the aging district are divided into four groups such as the special districts of decreasing population group-the same one as the aging district, the special districts of decreasing population group, the special districts of increasing population group, and the other district. With the cohort analysis method by age used to investigate the definite increase and decrease of aging population through population transition of each group, it is found that the progress of population aging is closely related to the social population fluctuation, especially that aged population rate is higher with the out-migration of non-elderly population. This is to explain each model of CBD, inner area, and the suburbs after modeling the aging district, the special districts of decreasing population, and the special districts of increasing population in Taejeon city. On the assumption that the city area is a concentric circle, it is possible to divide it into three areas such as CBD(A), the inner area(B), and the suburbs(C). The special districts of increasing and decreasing population in the city are divided into three districts-the special districts of decreasing population(a), the special districts of increasing population(b), and the others(c). The aging district of this city is divided into the aging district($\alpha$) and the others($\beta$). And then modeling these districts, it is probable to find regional patterns in the city. $Aa{\alpha}$ and $Ac{\beta}$ patterns are found in the CBD, in which $Aa{\alpha}$ is the special district of decreasing population and is higher in aged population rate because of aged population low in mobility staying behind and out-migration of non-elderly population. $Ba{\alpha}$, $Ba{\beta}$, $Bb{\beta}$, and $Bc{\beta}$ patterns are found in the inner area, in which neighboring area $Ba{\alpha}$ pattern is located. $Bb{\beta}$ pattern is located at the new developing area of newly built apartment complex. $Cb{\beta}$, $Cc{\alpha}$, and $Cc{\beta}$ patterns are found in the suburbs, among which $Cc{\alpha}$ pattern is highest in population aging. It is likely that the $Cc{\beta}$ under housing land readjustment on a large scale will be the $Cb{\beta}$ pattern. As analyzed above, marriage and out-migration of new family, non-elderly population, with house purchase are main factors in accelerating population aging in the central area of the city. Population aging is responsible for the great increase of aged population with longer life expectancy by the low death rate, the out-migration of non-elderly population, and the age group of new aged population in the suburbs. It is necessary to investigate and analyze the regional patterns of population aging at the time when population problems caused by aging as well as longer life expectancy are now on the increase. I hope that this will help the future study on population aging of the geographical field in Korea. As in the future population aging will be a major problem in our society, local autonomy should make a plan for the problem to the extent that population aging progresses by regional groups and inevitably prepare for it.

  • PDF

Studies on Ecological Variation and Inheritance for Agronomical Characters of Sweet Sorghum Varieties (Sorghum vulgare PERS) in Korea (단수수(Sorghum vulgare PERS) 품종의 생태변이 및 유용형질의 유전에 관한 연구)

  • Se-Ho Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.10
    • /
    • pp.1-43
    • /
    • 1971
  • Experiment I: The objective of this study was to know variation in some selected agronomic characters of sweet sorghum when planted in several growing seasons. The 17 different sweet sorghum varieties having various maturities, and plant, syrup and sugar types were used in this study which had been carried out for the period of two years from 1968 to 1969 at Industrial Crops Division of Crop Experiment Station in Suwon. These varieties were planted at an interval of 20 days from April 5 to August 25 both in 1968 and 1969. The experimental results could be summarized as follows: 1. As planting was made early, the number of days from sowing to germination was getting prolonged while germination took place early when planted at the later date of which air temperature was relatively higher. However, such a tendency was not observed beyond the planting on August 25. In general, a significant negative correlation was found between the number of days from sowing to germination and the average daily temperature but a positive correlation was found between the former and the total accumulated average temperature during the growth period. 2. The period from sowing to heading was generally shortened as planting was getting delayed. The average varietal difference in number of days from sowing to heading was as much as 30.2 days. All the varieties were grouped into early-, medium and late-maturing groups based upon a difference of 10 days in heading. The average number of days from sowing to heading was 78.5$\pm$4.5 days in the early-maturing varieties, 88.5$\pm$4.5 days in the medium varieties and 98.5$\pm$4.5 days in the late-maturing varieties, respectively. The early-maturing varieties had the shortest period to heading when planted from July 15 to August 5, the medium varieties did when planted before July 15 and the late-maturing varieties did when planted before June 5. 3. The relationship between the sowing date (x) and number of days from sowing to heading could be expressed in an equation of y=a+bx. A highly positive correlation was found between the coefficient of the equation(shortening rate in heading time) and the average number of days from sowing to heading. 4. The number of days from sowing to heading was shortened as the daily average temperature during the growth period was getting higher. Early-maturing varieties had the shortest period to heading at a temperature of 24.2$^{\circ}C$, medium varieties at 23.8$^{\circ}C$ and late-maturing varieties at 22.9$^{\circ}C$, respectively. In other words, the number of days from sowing to heading was shortened rapidly in case that the average temperature for 30 days before heading was 22$^{\circ}C$ to $25^{\circ}C$. It prolonged relatively when the temperature was lower than 21$^{\circ}C$. 5. There was a little difference in plant height among varieties. In case of early planting, no noticeable difference in the height was observed. The plant height shortened generally as planting season was delayed. Elongation of plant height was remarkably accelerated as planting was delayed. This tendency was more pronounced in case of early-maturing varieties rather than late-maturing varieties. As a result, the difference in plant height between the maximum and the minimum was greater in late-maturing varieties than in early-maturing varieties. 6. Diameter of the stalk was getting thicker as planted earlier in late-maturing varieties. On the other hand, medium or early-maturing varieties had he thickest diameter when they were planted on April 25. 7. In general, a higher stalk yield was obtained when planted from April 25 to May 15. However, the planting time for the maximum stalk yield varied from one variety to another depending upon maturity of variety. Ear]y-maturing varieties produced the maximum yield when planted about April 25, medium varieties from April 25 to May 15 and late-maturing varieties did when planted from April 5 to May 15 respectively. The yield decreased linearly when they were planted later than the above dates. 8. A varietal difference in Brix % was also observed. The Brix % decreased linearly when the varieties were planted later than May 15. Therefore, a highly negative relationship between planting date(x) and Brix %(y) was detected. 9. The Brix % during 40 to 45 days after leading was the highest at the 1st to the 3rd internodes from the top while it decreased gradually from the 4th internode. It increased again somewhat at the 2nd internode from the ground level. However, it showed a reverse relationship between the Brix % and position of internode before heading. 10. Sugar content in stalk decreased gradually as planting was getting delayed though one variety differed from another. It seemed that sweet sorghum which planted later than June had no value as a sugar crop at all. 11. The Brix % and sugar content in stalk increased from heading and reached the maximum 40 to 45 days after heading. The percentage of purity showed the same tendency as the mentioned characters. Accordingly, a highly positive correlation was observed between. percentage of purity and Brix % or sugar content in stalk. 12. The highest refinable sugar yield was obtained from the planting on April 25 in late-maturing varieties and from that on May 15 in early-maturing varieties. The yield rapidly decreased when planted later than those dates. Such a negative correlation between planting date(x) and refinable sugar yield(y) was highly significant at 1% level. 13. Negative correlations or linear regressions between delayed planting and the number of days from sowing to germination. accumulated temperature during germination period, number of days to heading, accumulated temperature to heading, plant height, stem diameter, stalk weight, Brix %. sugar content, refinable sugar yield or Purity % were obtained. On the other hand, highly positive correlations between the number of days from sowing to heading(x) and Brix %, sugar content, purity %, refinable sugar yield, plant height or stalk yield, between Brix %(x) and purity %, refinable sugar yield or stalk yield, between sugar content(x) and purity% or refinable sugar yield(y), between purity %(x) and refinable sugar yield and between daylength at heading(x) and Brix %. number of days from sowing to heading, sugar content, purity % or refinable sugar yield (y), were found, respectively. Experiment II: The 11 varieties were selected out of the varieties used in Experiment I from ecological and genetic viewpoints. Complete diallel cross were made among them and the heading date, stalk length, stalk yield, Brix %, syrup yield, combining ability and genetic behavior of F$_1$ plants and their parental varieties were investigated. The results could be summarized as follows: 1. In general, number of days to heading showed a partial dominance over earliness or late maturity or had a mid-value, though there were some specific combinations showing a complete dominance or transgressive segregation in maturity. Some combinations showed relatively high general or specific combining abilities in maturity. Therefore, a 50 to 50 segregation ratio in heading date could be estimated in this study and it might be positive to have a selection in early generation since heritability of the character was relatively high. 2. A vigorous hybrid vigor was observed in stalk length. A complete or partial dominant effect of long stalk was obtained. The general combining ability and specific combining ability of stalk length were generally high. Long and short stalks segregated in a ratio of 50:50 and its heritability was relatively low. 3. Except for several specific combinations, high stalk yield seemed to be partial dominant over the low yield. Some varieties demonstrated relatively high general as well as specific combining abilities. It was assumed that several recessive genes were involved in expression of this character. The interaction among regulating recessive genes was also obtained. Accordingly, the heritability of stalk yield seemed to be rather low. 4. The Brix % of hybrid plants located around mid-parental value though some of them showed much higher or lower percentage. It could be explained by the fact that such behavior might be due to partial dominance of Brix %. The varieties with, relatively higher Brix % were high both in general. and specific combining abilities. Therefore, it could be recommended to use the varieties having higher sugar content in order to develop higher-sugar varieties. 5. The syrup yield seemed to be transgressively segregated or completely dominant over low yield. Hybrid vigor of syrup yield was relatively high. No-consistent relationship between general combining ability and specific combining ability was observed. However, some cases demonstrated that the varieties with relatively higher general combining ability had relatively lower specific combining ability. It was assumed that the frequencies of dominant and recessive alleles were almost same.

  • PDF