• Title/Summary/Keyword: 5S rRNA

Search Result 1,086, Processing Time 0.035 seconds

Multiple Confirmation and RAPD-genotyping of Enterobacter sakazakii Isolated from Sunsik (선식에서 분리한 Enterobacter sakazakii의 복합동정 및 RAPD를 이용한 genotyping)

  • Choi, Jae-Won;Kim, Yun-Ji;Lee, Jong-Kyung;Kim, Young-Ho;Kwon, Ki-Sung;Hwang, In-Gyun;Oh, Se-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.101-105
    • /
    • 2008
  • Enterobacter sakazakii is implicated in severe forms of neonatal infections such as meningitis and sepsis. This organism has been isolated from a wide range of foods, including cheese, vegetables, grains, herbs, and spices, but its primary environment is still unknown. Generally, dried infant milk formula has been epidemiologically identified as the source of E. sakazakii. Sunsik (a powdered mixture of roasted grains and other foodstuffs) is widely consumed in Korea as a side dish or energy supplement. Sunsik is consumed without heat treatment; thus, lacking an additional opportunity to inactivate foodborne pathogens. Therefore, its microbiological safety should be guaranteed. In this study, the prevalence of E. sakazakii was monitored in 23 different sunsik component flours, using FDA recommended methods; but E. sakazakii medium (Neogen) and Chromogenic E. sakazakii medium (Oxoid) were used as the selective media. In total, presumptive E. sakazakii strains were isolated from 8 different sunsik powders. Subsequently, an API 20E test was conducted, and 15 strains from 5 different sunsik flours (sea tangle, brown rice, non-glutinous rice, cheonggukjang, dried anchovy) were confirmed as E. sakazakii. Fifteen strains were again confirmed by PCR amplification, using three different primer sets (tDNA sequence, ITS sequence, 16S rRNA sequence), and compared to ATCC strains (12868, 29004, 29544, 51329). They were once again confirmed by their enzyme production profiles using an API ZYM kit. Finally, RAPD (random amplified polymorphic DNA)-genotyping was carried out as a monitoring tool to determine the contamination route of E. sakazakii during processing.

Effect of Korea red ginseng on nonalcoholic fatty liver disease: an association of gut microbiota with liver function

  • Hong, Ji Taek;Lee, Min-Jung;Yoon, Sang Jun;Shin, Seok Pyo;Bang, Chang Seok;Baik, Gwang Ho;Kim, Dong Joon;Youn, Gi Soo;Shin, Min Jea;Ham, Young Lim;Suk, Ki Tae;Kim, Bong-Soo
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.316-324
    • /
    • 2021
  • Background: Korea Red Ginseng (KRG) has been used as remedies with hepato-protective effects in liver-related condition. Microbiota related gut-liver axis plays key roles in the pathogenesis of chronic liver disease. We evaluated the effect of KRG on gut-liver axis in patients with nonalcoholic statohepatitis by the modulation of gut-microbiota. Methods: A total of 94 patients (KRG: 45 and placebo: 49) were prospectively randomized to receive KRG (2,000 mg/day, ginsenoside Rg1+Rb1+Rg3 4.5mg/g) or placebo during 30 days. Liver function test, cytokeraton 18, and fatigue score were measured. Gut microbiota was analyzed by MiSeq systems based on 16S rRNA genes. Results: In KRG group, the mean levels (before vs. after) of aspartate aminotransferase (53 ± 19 vs. 45 ± 23 IU/L), alanine aminotransferase (75 ± 40 vs. 64 ± 39 IU/L) and fatigue score (33 ± 13 vs. 26 ± 13) were improved (p < 0.05). In placebo group, only fatigue score (34 ± 13 vs. 31 ± 15) was ameliorated (p < 0.05). The changes of phyla were not statistically significant on both groups. In KRG group, increased abundance of Lactobacillus was related with improved alanine aminotransferase level and increased abundance of Clostridium and Intestinibacter was associated with no improvement after KRG supplementation. In placebo group, increased abundance of Lachnospiraceae could be related with aggravation of liver enzyme (p < 0.05). Conclusion: KRG effectively improved liver enzymes and fatigue score by modulating gut-microbiota in patients with fatty liver disease. Further studies are needed to understand the mechanism of improvement of nonalcoholic steatohepatitis. ClnicalTrials.gov: NCT03945123 (www.ClinicalTrials.gov).

Biochemical properties and gluten degradation of Lactobacillus paracasei strain GLU70 isolated from salted seafood (젓갈에서 분리한 락토바실러스 파라카제이 GLU70 균주의 생화학적 특성 및 글루텐 분해능)

  • Park, Hyein;Yoon, Seul Gi;Jang, Junho;Byun, Ji Young;Yoon, Bok Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.203-208
    • /
    • 2022
  • Gluten is an insoluble protein present in cereals such as wheat. Gluten consumed through food is not digested and accumulates in the body; this has been linked to digestive discomfort, irritation, and various digestive disorders, including intestinal inflammation. In this study, the Lactobacillus paracasei strain GLU70, which exhibits a glutendegrading ability, was isolated from salted seafood. At a pH of 3.0, GLU70 showed a survival rate of approximately 84%, and at 0.3% oxgall, it showed a survival rate of approximately 53%. When the culture supernatant collected after 12 h of incubation was added to flour dough, approximately 50% gluten degradation was observed. Moreover, among several probiotic isolates exhibiting proteolytic activity selected to assess the gluten-degrading ability, GLU70 showed superior results regardless of the dough fermentation temperature. Although further research is required, GLU70 is expected to be of value in manufacturing gluten-reduced products and the food industry as an ingredient or additive.

Characterization of the Novel Marine Bacterium Planococcus sp. 107-1T (신종 해양미생물 Planococcus sp. 107-1T의 분류학적 특성 분석)

  • Kim, Dong-Gyun;Jung, Hyun-Kyoung;Kim, Young-Ok;Kong, Hee Jeong;Nam, Bo-Hye;Kim, Ju-Won;Kim, Young-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.612-624
    • /
    • 2022
  • A novel Gram-positive, motile, non-spore forming aerobic marine bacterium, designated 107-1T was isolated from tidal mud collected in Gyehwa-do, South Korea. Cells of strain 107-1T were short rod or coccoid, oxidase negative, catalase positive and grew at 10-40℃ (with optimum growth at 25-30℃). It utilized menaquinones MK-7 and 8 as its respiratory quinones and its major fatty acids were anteiso-C15:0 (37.9%), iso-C16:0 (14.9%), and iso-C14:0 (10.8%). Phylogenetic analysis based on 16S rRNA gene sequences revealed a distinct clade containing strain 107-1T and close species Planococcus ruber CW1T(98.52% sequence similarity), P. faecalis KCTC 33580T(97.67%), P. kocurii ATCC 43650T(97.48%), P. donghaensis DSM 22276T(97.47%), and P. halocryophilus DSM 24743T(97.37%). Strain 107-1T contains one circular chromosome (3,513,248bp in length) with G+C content of 44.6 mol%. Estimated ranges for genome to genome distance, average nucleotide identity, and average amino acid identity comparing strain 107-1T with close taxa were 20.3-34.8%, 77.9-86.9%, and 73.6-92.8%, respectively. Based on polyphasic analysis, strain 107-1T represents a novel species belonging to the genus Planococcus.

Sphingomonas abietis sp. nov., an Endophytic Bacterium Isolated from Korean Fir

  • Lingmin Jiang;Hanna Choe;Yuxin Peng;Doeun Jeon;Donghyun Cho;Yue Jiang;Ju Huck Lee;Cha Young Kim;Jiyoung Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1292-1298
    • /
    • 2023
  • PAMB 00755T, a bacterial strain, was isolated from Korean fir leaves. The strain exhibits yellow colonies and consists of Gram-negative, non-motile, short rods or ovoid-shaped cells. It displays optimal growth conditions at 20℃, 0% NaCl, and pH 6.0. Results of 16S rRNA gene-based phylogenetic analyses showed that strain PAMB 00755T was most closely related to Sphingomonas chungangi MAH-6T (97.7%) and Sphingomonas polyaromaticivorans B2-7T (97.4%), and ≤96.5% sequence similarity to other members of the genus Sphingomonas. The values of average nucleotide identity (79.9-81.3%), average amino acid identity (73.3-75.9%), and digital DNA-DNA hybridization (73.3-75.9%) were significantly lower than the threshold values for species boundaries; these overall genome-related indexes (OGRI) analyses indicated that the strain represents a novel species. Genomic analysis revealed that the strain has a 4.4-Mbp genome encoding 4,083 functional genes, while the DNA G+C content of the whole genome is 66.1%. The genome of strain PAMB 00755T showed a putative carotenoid biosynthetic cluster responsible for its antioxidant activity. The respiratory quinone was identified as ubiquinone 10 (Q-10), while the major fatty acids in the profile were identified as C18:1ω7c and/or C18:1ω6c (summed feature 8). The major polar lipids of strain PAMB 00755T were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, and phosphatidylcholine. Based on a comprehensive analysis of genomic, phenotypic, and chemotaxonomic characteristics, we proposed the name Sphingomonas abietis sp. nov. for this novel species, with PAMB 00755T as the type strain (= KCTC 92781T = GDMCC 1.3779T).

Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines

  • Jisu Kim;Shuya Zhang ;Ying Zhu;Ruirui Wang;Jianxin Wang
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.627-637
    • /
    • 2023
  • Background: Damage to the healthy intestinal epithelial layer and regulation of the intestinal immune system, closely interrelated, are considered pivotal parts of the curative treatment for inflammatory bowel disease (IBD). Plant-based diets and phytochemicals can support the immune microenvironment in the intestinal epithelial barrier for a balanced immune system by improving the intestinal microecological balance and may have therapeutic potential in colitis. However, there have been only a few reports on the therapeutic potential of plant-derived exosome-like nanoparticles (PENs) and the underlying mechanism in colitis. This study aimed to assess the therapeutic effect of PENs from Panax ginseng, ginseng-derived exosome-like nanoparticles (GENs), in a mouse model of IBD, with a focus on the intestinal immune microenvironment. Method: To evaluate the anti-inflammatory effect of GENs on acute colitis, we treated GENs in Caco2 and lipopolysaccharide (LPS) -induced RAW 264.7 macrophages and analyzed the gene expression of proinflammatory cytokines and anti-inflammatory cytokines such as TNF-α, IL-6, and IL-10 by real-time PCR (RT-PCR). Furthermore, we further examined bacterial DNA from feces and determined the alteration of gut microbiota composition in DSS-induced colitis mice after administration of GENs through 16S rRNA gene sequencing analysis. Result: GENs with low toxicity showed a long-lasting intestinal retention effect for 48 h, which could lead to effective suppression of pro-inflammatory cytokines such as TNF-α and IL-6 production through inhibition of NF-κB in DSS-induced colitis. As a result, it showed longer colon length and suppressed thickening of the colon wall in the mice treated with GENs. Due to the amelioration of the progression of DSS-induced colitis with GENs treatment, the prolonged survival rate was observed for 17 days compared to 9 days in the PBS-treated group. In the gut microbiota analysis, the ratio of Firmicutes/Bacteroidota was decreased, which means GENs have therapeutic effectiveness against IBD. Ingesting GENs would be expected to slow colitis progression, strengthen the gut microbiota, and maintain gut homeostasis by preventing bacterial dysbiosis. Conclusion: GENs have a therapeutic effect on colitis through modulation of the intestinal microbiota and immune microenvironment. GENs not only ameliorate the inflammation in the damaged intestine by downregulating pro-inflammatory cytokines but also help balance the microbiota on the intestinal barrier and thereby improve the digestive system.

Positive effects of grazing on blood components and intestinal microbiota in growing horses

  • Ji Hyun Yoo;Jong An Lee;Jae Young Choi;Sang Min Shin;Moon Cheol Shin;Hyeon Ah Kim;Yong Jun Kang;Hee Chung Ji;In Cheol Cho;Byoung Chul Yang
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.963-971
    • /
    • 2022
  • Production of high-quality horses is important to make the horse industry grow. Grazing during the growing period can be an important factor affecting the production of high-quality horses. The objective of this study was to determine the effects of grazing on growing horses by analyzing their blood components and intestinal microbiota. Twelve growing horses for evaluating blood components and ten growing horses for evaluating intestinal microbiota were raised for about seven months and separated by two treatments: grazing vs. stable. Complete blood count, blood chemistry, and creatine kinase levels were analyzed as blood components and a 16s rRNA gene sequence analysis was performed to analyze intestinal microbiota. Calcium ions tended to be lower in the group with grazing treatment. Alkaline phosphatase and creatine kinase tended to be higher in the group with grazing treatment. These results indicate that grazing can provide horses with more exercise than staying in stables. At the phylum level, Firmicutes/Bacteroidetes ratios in grazing and stable groups were 4.2 and 6.5, respectively. Because various studies have reported that a. high Firmicutes/Bacteroidetes ratio indicates obesity, the method of raising horses might affect their physical ability. At the species level, rates of Clostridium butyricum in grazing and stable groups were 3.2% and 13.1%, respectively. Some strains of C. butyricum can cause several diseases such as botulism. These results indicate that grazing can positively affect growing horses in terms of blood components and intestinal microbiota. Moreover, grazing can be helpful to make growing horses healthy through proper exercise.

Agromyces silvae sp. nov., Rathayibacter soli sp. nov., and Nocardioides terrisoli sp. nov., Isolated from Soil

  • Hyosun Lee;Dhiraj Kumar Chaudhary;Dong-Uk Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1475-1483
    • /
    • 2024
  • Three Gram-stain-positive, aerobic, rod-shaped, and non-motile bacteria, labelled as W11T, SW19T, and YR1T, were isolated from soil, and performed their polyphasic taxonomic investigation. The phylogenetic and 16S rRNA gene sequence analysis showed that strains W11T, SW19T, and YR1T belonged to the genera Agromyces, Rathayibacter, and Nocardioides, respectively. Strain W11T was closely affiliated with Agromyces cavernae SYSU K20354T (98.1%), strain SW19T showed the closest affiliation with Rathayibacter rubneri ZW T2_19T (97.0%), and strain YR1T was most closely related to Nocardioides marmorisolisilvae KIS18-7T (98.0%). The genome sizes of strains W11T, SW19T, and YR1T were 4,181,720 bp, 4,740,677 bp, and 4,228,226 bp, respectively, with DNA G+C contents of 70.5%, 64.2%, and 69.7%, respectively. Average nucleotide identity and digital DNA-DNA hybridization values of W11T, SW19T, and YR1T with their respective reference species were <79.6% and <23.6%, respectively. The predominant cellular fatty acids detected in strain W11T were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. In strain SW19T, they were summed feature 9 (C16:0 10-methyl and/or iso-C17:1ω 9c), anteiso-C17:0, and anteiso-C15:0. Strain YR1T exhibited C18:1ω 9c, C18:0 10-methyl, TBSA, and anteiso-C15:0 as its major cellular fatty acids. Overall, the polyphasic taxonomic comparisons indicated that strains W11T, SW19T, and YR1T represent novel species within the genera Agromyces, Rathayibacter, and Nocardioides, respectively. Accordingly, we propose the names Agromyces silvae sp. nov., with the type strain W11T (=KCTC 49818T =NBRC 115999T), Rathayibacter soli sp. nov., with the type strain SW19T (=KCTC 49860T =NBRC 116108T), and Nocardioides terrisoli sp. nov., with the type strain YR1T (=KCTC 49863T =NBRC 116165T).

Mucin2 is Required for Probiotic Agents-Mediated Blocking Effects on Meningitic E. coli-Induced PathogenicitiesS

  • Yu, Jing-Yi;He, Xiao-Long;Puthiyakunnon, Santhosh;Peng, Liang;Li, Yan;Wu, Li-Sha;Peng, Wen-Ling;Zhang, Ya;Gao, Jie;Zhang, Yao-Yuan;Boddu, Swapna;Long, Min;Cao, Hong;Huang, Sheng-He
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1751-1760
    • /
    • 2015
  • Mucin2 (MUC2), an important regulatory factor in the immune system, plays an important role in the host defense system against bacterial translocation. Probiotics known to regulate MUC2 gene expression have been widely studied, but the interactions among probiotic, pathogens, and mucin gene are still not fully understood. The aim of this study was to investigate the role of MUC2 in blocking effects of probiotics on meningitic E. coli-induced pathogenicities. In this study, live combined probiotic tablets containing living Bifidobacterium, Lactobacillus bulgaricus, and Streptococcus thermophilus were used. MUC2 expression was knocked down in Caco-2 cells by RNA interference. 5-Aza-2'-deoxycytidine (5-Aza-CdR), which enhances mucin-promoted probiotic effects through inducing production of Sadenosyl-L-methionine (SAMe), was used to up-regulate MUC2 expression in Caco-2 cells. The adhesion to and invasion of meningitic E. coli were detected by competition assays. Our studies showed that probiotic agents could block E. coli-caused intestinal colonization, bacteremia, and meningitis in a neonatal sepsis and meningitis rat model. MUC2 gene expression in the neonatal rats given probiotic agents was obviously higher than that of the infected and uninfected control groups without probiotic treatment. The prohibitive effects of probiotic agents on MUC2-knockdown Caco-2 cells infected with E44 were significantly reduced compared with nontransfected Caco-2 cells. Moreover, the results also showed that 5-Aza-CdR, a drug enhancing the production of SAMe that is a protective agent of probiotics, was able to significantly suppress adhesion and invasion of E44 to Caco-2 cells by upregulation of MUC2 expression. Taken together, our data suggest that probiotic agents can efficiently block meningitic E. coli-induced pathogenicities in a manner dependent on MUC2.

Treatment of $Smilax$ $china$ L. Root Extract for Improvement of Storage Stability of $Mang-gae$ Rice Cake (망개떡의 저장성 향상을 위한 청미래덩굴 뿌리 추출물의 첨가)

  • Ko, Yu-Jin;Kim, Jin-Yong;Kim, Eun-Jung;Kim, Eun-Ja;Seol, Hui-Gyeong;Park, Geun-Hye;Chung, Gwon-Yong;Ryu, Chung-Ho
    • Food Science and Preservation
    • /
    • v.19 no.2
    • /
    • pp.167-172
    • /
    • 2012
  • The antimicrobial activities of $Smilax$ $china$ L. against spoilage bacteria isolated from $Mang-gae$ rice cake were investigated and the storage stability of the $Mang-gae$ rice cake was enhanced. Spoilage bacteria, which cause $Mang-gae$ rice cake to rot, were isolated from commercial $Mang-gae$ rice cake, and most of the isolated strains were identified as $Bacillus$ sp. After the leaves, roots, shoots, and stalks of the $Smilax$ $china$ L. were extracted using 50% ethanol as the solvent, their antimicrobial activities were investigated using the paper disc method by treating them with 50 ${\mu}L$ of $Bacillus$ $cereus$, which is known as a major pathogenic micro-organism in foods that contain starch, as the test organism. The antimicrobial activities of the extracts were compared according to the size of the clear zones around the paper discs. The root extract showed significant antimicrobial activities. When red beans, which are used as stuffing for $Mang-gae$ rice cake, were treated with the root extract of the $Smilax$ $china$ L., the viable cell count of the $Mang-gae$ rice cake was 5.04 Log CFU/g after 48-hr storage, and the cake showed significantly slower growth of bacteria than with commercial products. These results show that treatment of red beans with $Smilax$ $china$ root extract could improve the storage stability of $Mang-gae$ rice cake.