• Title/Summary/Keyword: 5MW wind turbine

Search Result 199, Processing Time 0.029 seconds

Electromagnetic design of 10 MW class superconducting wind turbine using 2G HTS wire

  • Kim, J.H.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.29-34
    • /
    • 2013
  • This paper introduces design processes of 10 MW class superconducting generator for wind Turbine. Superconducting generator can produce 5 times stronger magnetic field than permanent magnet at least, which enables large scale wind turbine to function as a lighter, smaller and more highly efficient system. These processes are targeted for higher efficiency and shorter high temperature superconductor (HTS) wires to fabricate 10 MW class superconducting generator. Three different approaches will be described in these design processes. First design process focuses on the number of rotor poles. Secondly, 270 and 360 A operating current of superconducting field coil can be adapted as a design parameter in this process. Lastly, 3 and 6 kV line to line voltage of stator coil will be used to design 10 MW class superconducting generator.

Development of Unmanned Remote Monitoring System for MW Class Wind Turbines (대형 풍력터빈을 위한 무인 원격감시시스템 개발)

  • Park, Joon-Young;Kim, Beom-Joo;Lee, Jae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.412-418
    • /
    • 2011
  • The scale of wind turbines has continuously increased over the last decade. Especially, the rapid growth of the rotor diameter has brought about the increase of the tower height and the load on the rotor blade, as can be seen in the case of a 5MW class wind turbine with 126m rotor diameter. This trend means the increasing possibility of system failure. In addition to that, it is impossible for human operators to stay and manage all the turbines in the case of a large-scale wind farm. For these reasons, the operation and maintenance technology is getting more importance. In this paper, we present an unmanned remote monitoring system for MW class wind turbines and its application to YeungHeung wind test bed.

Loss Analysis and Comparison of High Power Semiconductor Devices in 5MW PMSG MV Wind Turbine Systems

  • Lee, Kihyun;Suh, Yongsug;Kang, Yongcheol
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1380-1391
    • /
    • 2015
  • This paper provides a loss analysis and comparison of high power semiconductor devices in 5MW Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) Wind Turbine Systems (WTSs). High power semiconductor devices of the press-pack type IGCT, module type IGBT, press-pack type IGBT, and press-pack type IEGT of both 4.5kV and 6.5kV are considered in this paper. Benchmarking is performed based on the back-to-back type 3-level Neutral Point Clamped Voltage Source Converters (3L-NPC VSCs) supplied from a grid voltage of 4160V. The feasible number of semiconductor devices in parallel is designed through a loss analysis considering both the conduction and switching losses under the operating conditions of 5MW PMSG wind turbines, particularly for application in offshore wind farms. This paper investigates the loss analysis and thermal performance of 5MW 3L-NPC wind power inverters under the operating conditions of various power factors. The loss analysis and thermal analysis are confirmed through PLECS Blockset simulations with Matlab Simulink. The comparison results show that the press-pack type IGCT has the highest efficiency including the snubber loss factor.

An Experimental Study on Wake Flow-Field of NREL 5 MW Wind Turbine Model (NREL 5 MW 풍력터빈 모형의 후류 유동장에 대한 실험적 연구)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.85-91
    • /
    • 2017
  • A wind tunnel test for 1/86 scaled down model of the NREL 5 MW offshore wind turbine was conducted to investigate the wake and flow fields. Deficit of flow speed in the wake region and variations of the turbulence intensity were measured using a hot wire anemometer at rated tip speed ratio of 11.4 m/s and a rotational speed of 1,045 rpm. According to the test results, velocity deficits along both of lateral and vertical directions were recovered within 2 rotor radii downstream from the rotating disc plane. The tip vortices effect was negligible after 5 rotor radii downstream from the rotating plane. Turbulence intensities showed maximum value around the blade tip, and decreased rapidly after one radius apart from the rotating plane, and those values were preserved until 6 rotor radii downstream.

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.

Model test of an inverted conical cylinder floating offshore wind turbine moored by a spring-tensioned-leg

  • Shin, Hyunkyoung;Cho, Sangrai;Jung, Kwangjin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • A new 5-MW floating offshore wind turbine moored by a spring-tensioned-leg was proposed for installation in about 50m water depth. Its substructure is a platform of the inverted conical cylinder type with massive ballast weight plate at the bottom. A 1:128 scale model was built for the preliminary engineering development. The model tests in waves and wind were carried out to estimate motion characteristics of this platform in the Ocean Engineering Wide Tank of the University of Ulsan. Its motions were measured and the RAOs were compared. The proposed floating offshore wind turbine showed a good stability and decent responses in waves, wind and operation of the wind turbine.

Wind Loads of 5 MW Horizontal-Axis Wind Turbine Rotor in Parked Condition (운전정지 조건에서 5 MW 수평축 풍력터빈 로터의 풍하중 해석)

  • Ryu, Ki-Wahn;Seo, Yun-Ho
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.163-169
    • /
    • 2018
  • In this study, wind loads exerted on the offshore wind turbine rotor in parked condition were predicted with variations of wind speeds, yaw angles, azimuth angle, pitch angles, and power of the atmospheric boundary layer profile. The calculated wind loads using blade element theorem were compared with those of estimated aerodynamic loads for the simplified blade shape. Wind loads for an NREL's 5 MW scaled offshore wind turbine rotor were also compared with those of NREL's FAST results for more verification. All of the 6-component wind loads including forces and moments along the three axis were represented on a non-rotating coordinate system fixed at the apex of rotor hub. The calculated wind loads are applicable for the dynamic analysis of the wind turbine system, or obtaining the over-turning moment at the foundation of support structure for wind turbine system.

Structural Vibration Analyses of a 5 MW Offshore Wind Turbine with Substructure (하부구조를 포함한 5MW급 천해용 해상 풍력발전기 구조진동해석)

  • Kim, Dong-Hwan;Kim, Dong-Hyun;Kim, Myung-Hwan;Kim, Bong-Yung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.607-613
    • /
    • 2011
  • In this study, structural vibration analyses for a 5MW offshore wind wind-turbine model have been performed for different substructure models. The efficient equivalent modeling method based on computational multi-body dynamics are applied to the finite element models of the present offshore wind turbines. Monopile and tri-pod substructure types of the typical offshore wind-turbine are considered herein. Detailed finite element modeling concepts and boundary conditions are described and the comparison results for previous analyses are presented in order to show the verification of the present numerical approach. Campbell diagrams are also present to investigate the rotational resonance characteristics of the offshore wind-turbines with different substructures.

  • PDF

Design of a Small-Scale Motor-Generator System for a Large Wind Turbine (대형 풍력발전기용 소형 모터-발전기 시스템 설계)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • Small-scale motor-generator sets have been used in laboratories for verification of real large wind turbines whose rated power are more than 1 MW. In this paper, a result of designing a small-scale motor-generator system, which is composed of motor, gear box, flywheel, and generator, is presented in the aspect of speed response. Design objective is to make a small-scale motor-generator system have the same time constant and optimal tip speed ratio region as a real MW wind turbine. A small-scale 3.5 kW motor-generator system for emulating response of a 2 MW wind turbine is considered and designed.

The Characteristic of the Hub Construction Wind Power Industry of the West-South Seashore with Favorable Products (서남해안 풍력산업 허브 구축사업의 유망 상품의 특성)

  • Cha, In Su;Kim, Taehyung;Lee, Ki Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.179.1-179.1
    • /
    • 2010
  • This paper has represented about the wind power industry of the west-south seashore with leading industry development for Honam Economic Region. These projects have composed of wind power industry of the west-south seashore, offshore wind turbine(2MW, 3MW) and onshore wind turbine(3kW, 5kW, 10kW), 11 projects, during 3 years- with honam leading industry development for economic region. The contents of these project are 3 favorable products and 3 business support projects. The favorable products are the MW offshore wind system with Outer-rotor type PMSG, the 3MWoffshore wind system with adaptation type of west-south sea, the hybrid generator system with wind turbine technology basis.

  • PDF