• Title/Summary/Keyword: 5G mobile

Search Result 638, Processing Time 0.029 seconds

Analysis of E2E Latency for Data Setup in 5G Network (5G 망에서 Data Call Setup E2E Latency 분석)

  • Lee, Hong-Woo;Lee, Seok-Pil
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.113-119
    • /
    • 2019
  • The key features of 5G mobile communications recently commercialized can be represented by High Data Rate, Connection Density and Low Latency, of which the features most distinct from the existing 4G will be low Latency, which will be the foundation for various new service offerings. AR and self-driving technologies are being considered as services that utilize these features, and 5G Network Latency is also being discussed in related standards. However, it is true that the discussion of E2E Latency from a service perspective is much lacking. The final goal to achieve low Latency at 5G is to achieve 1ms of air interface based on RTD, which can be done through Ultra-reliable Low Latency Communications (URLLC) through Rel-16 in early 20 years, and further network parity through Mobile Edge Computing (MEC) is also being studied. In addition to 5G network-related factors, the overall 5G E2E Latency also includes link/equipment Latency on the path between the 5G network and the IDC server for service delivery, and the Processing Latency for service processing within the mobile app and server. Meanwhile, it is also necessary to study detailed service requirements by separating Latency for initial setup of service and Latency for continuous service. In this paper, the following three factors were reviewed for initial setup of service. First, the experiment and analysis presented the impact on Latency on the Latency in the case of 1 Data Lake Setup, 2 CRDX On/Off for efficient power, and finally 3H/O on Latency. Through this, we expect Low Latency to contribute to the service requirements and planning associated with Latency in the initial setup of the required services.

Design of cellular, satellite, and integrated systems for 5G and beyond

  • Kim, Junhyeong;Casati, Guido;Cassiau, Nicolas;Pietrabissa, Antonio;Giuseppi, Alessandro;Yan, Dong;Strinati, Emilio Calvanese;Thary, Marjorie;He, Danping;Guan, Ke;Chung, Heesang;Kim, Ilgyu
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.669-685
    • /
    • 2020
  • 5G AgiLe and fLexible integration of SaTellite And cellulaR (5G-ALLSTAR) is a Korea-Europe (KR-EU) collaborative project for developing multi-connectivity (MC) technologies that integrate cellular and satellite networks to provide seamless, reliable, and ubiquitous broadband communication services and improve service continuity for 5G and beyond. The main scope of this project entails the prototype development of a millimeter-wave 5G New Radio (NR)-based cellular system, an investigation of the feasibility of an NR-based satellite system and its integration with cellular systems, and a study of spectrum sharing and interference management techniques for MC. This article reviews recent research activities and presents preliminary results and a plan for the proof of concept (PoC) of three representative use cases (UCs) and one joint KR-EU UC. The feasibility of each UC and superiority of the developed technologies will be validated with key performance indicators using corresponding PoC platforms. The final achievements of the project are expected to eventually contribute to the technical evolution of 5G, which will pave the road for next-generation communications.

Mobile Ultra-Broadband, Super Internet-of-Things and Artificial Intelligence for 6G Visions

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.235-245
    • /
    • 2023
  • Smart applications based on the Network of Everything also known as Internet of Everything (IoE) are increasing popularity as network connectivity requires rise further. As a result, there will be a greater need for developing 6G technologies for wireless communications in order to overcome the primary limitations of visible 5G networks. Furthermore, implementing neural networks into 6G will bring remedies for the most complex optimizing networks challenges. Future 6G mobile phone networks must handle huge applications that require data and an increasing amount of users. With a ten-year time skyline from thought to the real world, it is presently time for pondering what 6th era (6G) remote correspondence will be just before 5G application. In this article, we talk about 6G dreams to clear the street for the headway of 6G and then some. We start with the conversation of imaginative 5G organizations and afterward underline the need of exploring 6G. Treating proceeding and impending remote organization improvement in a serious way, we expect 6G to contain three critical components: cell phones super broadband, very The Web of Things (or IoT and falsely clever (artificial intelligence). The 6G project is currently in its early phases, and people everywhere must envision and come up with its conceptualization, realization, implementation, and use cases. To that aim, this article presents an environment for Presented Distributed Artificial Intelligence as-a-Services (DAIaaS) supplying in IoE and 6G applications. The case histories and the DAIaaS architecture have been evaluated in terms of from end to end latency and bandwidth consumption, use of energy, and cost savings, with suggestion to improve efficiency.

Effects of Radio Frequency Electromagnetic Fields Emitted by WCDMA Mobile Phones on Pacemakers and ICDs (WCDMA 휴대전화 전자파가 인공심장 박동기 및 이식형 제세동기에 미치는 영향)

  • Chung, Jai Won;Choi, Soo Beom;Park, Jee Soo;Kim, Deok Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.148-154
    • /
    • 2015
  • Reports show that global system for mobile communication (GSM) mobile phones, or two-generation (2G) mobile phones, could affect functions of pacemakers and implantable cardioverter defibrillators (ICDs). In this study, we evaluated the effects of radio frequency electromagnetic fields (RF-EMFs) emitted by wideband code division multiple access (WCDMA) mobile phones, which were third-generation (3G) mobile phones, on pacemakers and ICDs. Five pacemakers and three ICDs were subjected to in-vitro test using a ECG simulator. We used a WCDMA module (average power : 0.25 W, frequency band : 1950 MHz) instead of a real WCDMA mobile phone. To assess the effects of the WCDMA module on pacemakers and ICDs, each implantable device was placed in close proximity (within 3 mm) to the WCDMA module for 5 min. As a result, no effects were observed on the five pacemakers and three ICDs for the RF-EMFs emitted by the WCDMA module. Because WCDMA mobile phones have the higher frequency band (1800-2200 MHz) and lower power output (0.01-0.25 W) than GSM moboile phone, the RF-EMFs emitted by WCDMA mobile phones do not affect patients with pacemaker or ICD.

A Study on the Effective Usage of mmWave Bands for 5G Backhaul Links (5G 백홀 링크를 위한 밀리미터파 대역의 효율적 이용에 관한 연구)

  • Kang, Young-heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.783-790
    • /
    • 2016
  • Since scarcity of spectrum in future mobile networks, millimeter wave frequencies from 30 GHz to 300 GHz have been proposed to be used in an important part of 5G mobile communication backhaul links to provide several giga bits services. In ITU-R has been invited to conduct and complete in time for WRC-19 the appropriate studies to determine the spectrum needs for the terrestrial component of IMT in the frequency range between 24.25 GHz and 86 GHz. Also, small cells such as a femtocell, and heterogeneous networks have been deployed through world in order to enhance the communication capacity. At this stage, it is important to develop millimeter wave frequencies to provide 5G mobile broadband services, and thus this paper proposes the effective usage of these frequencies by summarizing the FCC allocation of millimeter waves, their propagation characteristics, the required minimum path length, and the interference effect.

Relaying of 4G Signal over 5G Suitable for Disaster Management following 3GPP Release 18 Standard

  • Jayanta Kumar Ray;Ardhendu Shekhar Biswas;Arpita Sarkar;Rabindranath Bera;Sanjib Sil;Monojit Mitra
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.369-390
    • /
    • 2023
  • Technologies for disaster management are highly sought areas for research and commercial deployment. Landslides, Flood, cyclones, earthquakes, forest fires and road/train accidents are some causes of disasters. Capturing video and accessing data in real time from the disaster site can help first responders make split second decisions which may save human lives and valuable resource destructions. In this context the communication technologies performing the task should have high bandwidth and low latency which only 5G can deliver. But unfortunately in India, deployment of the 5G mobile communication systems is yet to give a shape and again in remote areas unavailability of 4G signals is still severe. In this situation the authors have proposed, simulated and experimented a 4G-5G communication scheme where from the disaster site the signals will be transmitted by a 5G terminal to a nearby 4G-5G gateway installed in a mobile vehicle. The received 5G signal will be further relayed by the 4G-5G gateway to the fixed 4G base station for onward transmission towards the disaster management station for decision making, deployment and relief monitoring. The 4G-5G gateway acts as a relay and converter of 5G signal to 4G signal and vice versa. This relayed system can be further mounted on a vehicle mounted relay (VMR) as proposed by 3GPP in Release 18. The scheme is also in the same line of context with Verizon's, "Tactical Humanitarian Operations Response" (THOR) vehicle concept. The performance of the link is studied in different channel conditions, the throughput achieved is superb. The authors have implemented the above mentioned system towards smart campus networking and monitoring landslides activities which are common in their regions.

A Small Broadband Antenna for Wibro/WLAN/Mobile WiMAX (Wibro/WLAN/Mobile WiMAX용 소형 광대역 안테나)

  • Ko, Jeong-Ho;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.568-575
    • /
    • 2011
  • In this paper, we propose a small broadband antenna for mobile device. The proposed antenna consists of a printed rectangular monopole antenna and a parastic element connected to ground using narrow meander line and it is designed on a FR-4 substrate that has a thickness of 0.8 mm and a dielectric constant of 4.4. The FR-4 substrate's size is 50 mm${\times}$90 mm comparable to the real mobile device. The fabricated antenna's size is 12.5 mm${\times}$10.5 mm${\times}$0.8 mm and the measurement shows -10 dB return loss bandwidth of 2,200~6,000 MHz and gains of 2.86~4.01 dBi. Accordingly, the proposed antenna can support mobile device for WiBro(2,300~2,380 MHz), WLAN(IEEE 802.11b/g/n: 2,400~2,480 MHz, IEEE 802.11a: 5,150~5,825 MHz), and mobile WiMAX(IEEE 802.16e : 2,500~2,690 MHz, 3,400~3,600 MHz) service bands.

A High-Isolation MIMO Antenna with Dual-Port Structure for 5G Mobile Phones

  • Yang, Hyung-kyu;Lee, Won-Woo;Rhee, Byung-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1458-1470
    • /
    • 2018
  • In this letter, a new dual-port Multiple-Input Multiple-Output (MIMO) antenna is introduced which has two independent signal feeding ports in a single antenna element to achieve smaller antenna volumes for the 5G mobile applications. The dual-port structure is implemented by adding a cross coupled semi-loop (CCSL) antenna as the secondary radiator to the ground short of inverted-F antenna (IFA). It is found that the port to port isolation is not deteriorated when an IFA and CCSL is combined to form a dual-port structure. The isolation property of the proposed antenna is compared with a polarization diversity based dual-port antenna proposed in the literature [9]. The operating frequency range is 3.3-4.0 GHz which is suitable for places where $4{\times}4$ MIMO systems are supposed to be deployed such as in China, EU, Korea and Japan at the band ${\times}$ (3.3 - 3.8GHz. The measured 6-dB impedance bandwidths of the proposed antennas are larger than 700 MHz with isolation between the feeding ports higher than 18 dB [1-2]. The simulation and measurement results show that the proposed antenna concept is a very promising alternative for 5G mobile applications.

Field-Measurement-Based Received Power Analysis for Directional Beamforming Millimeter-Wave Systems: Effects of Beamwidth and Beam Misalignment

  • Lee, Juyul;Kim, Myung-Don;Park, Jae-Joon;Chong, Young Jun
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.26-38
    • /
    • 2018
  • To overcome considerable path loss in millimeter-wave propagation, high-gain directional beamforming is considered to be a key enabling technology for outdoor 5G mobile networks. Associated with beamforming, this paper investigates propagation power loss characteristics in two aspects. The first is beamwidth effects. Owing to the multipath receiving nature of mobile environments, it is expected that a narrower beamwidth antenna will capture fewer multipath signals, while increasing directivity gain. If we normalize the directivity gain, this narrow-beamwidth reception incurs an additional power loss compared to omnidirectional-antenna power reception. With measurement data collected in an urban area at 28 GHz and 38 GHz, we illustrate the amount of these additional propagation losses as a function of the half-power beamwidth. Secondly, we investigate power losses due to steering beam misalignment, as well as the measurement data. The results show that a small angle misalignment can cause a large power loss. Considering that most standard documents provide omnidirectional antenna path loss characteristics, these results are expected to contribute to mmWave mobile system designs.

Optimal Detection for NOMA Systems with Correlated Information Sources of Interactive Mobile Users (상호작용 이동통신 사용자의 상관 정보원을 가진 비직교 다중접속 시스템에서의 최적 검출)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.651-658
    • /
    • 2020
  • In the fifth generation (5G) mobile networks, the interactive mobile game users have increased tremendously, which induces correlated information sources (CIS). One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In NOMA, the users share the channel resources, so that CIS affect each user's bit-error rate (BER) performance, which is not the case for orthogonal multiple access (OMA). In this paper, we derive the optimal receiver for NOMA with CIS, and then investigate the impact of CIS on each user's BER performance.