• Title/Summary/Keyword: 5G MIMO

Search Result 46, Processing Time 0.026 seconds

Co-located and space-shared multiple-input multiple-output antenna module and its applications in 12 × 12 multiple-input multiple-output systems

  • Longyue Qu;Haiyan Piao;Guohui Dong
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.203-212
    • /
    • 2023
  • In this study, we developed a co-located and space-shared multiple-input multiple-output (MIMO) antenna module with a modular design and high integration level. The proposed antenna pair includes a half-wavelength loop antenna and a dipole-type antenna printed on the front and back sides of a compact modular board. Owing to their modal orthogonality, these two independent antenna elements are highly self-isolated and free of additional decoupling components, even though they are assembled at the same location and within the same space. Thus, the proposed antenna is attractive in 5G MIMO systems. Furthermore, the proposed co-located and space-shared MIMO antenna module was employed in a 5G smartphone to verify their radiation and diversity performances. A 12 × 12 MIMO antenna system was simulated and fabricated using the proposed module. Based on the results, the proposed module can be employed in large-scale MIMO antenna systems for current and future terminal devices owing to its high integration, compactness, simple implementation, and inherent isolation.

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.

An Alternative Scheme for localization for Robotic vacuum cleaner by 5G smart phone (5G 스마트폰을 활용한 로봇 청소기 측위 보조 방안)

  • Kim, Kihyoung;Kim, Youngkyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.305-306
    • /
    • 2022
  • 본 논문에서는 5G 스마트폰을 활용하여 사용자가 로봇 청소기의 위치 추정을 도울 수 있는 방안을 소개한다. 로봇 청소기는 다양한 알고리즘을 활용하여 자신의 위치를 추정하며, 때로는 오차가 발생하기도 한다. 현재 많은 사람들은 5G 스마트폰을 소유하고 있으며, 이 5G 스마트폰을 활용하여 로봇 청소기의 위치 추정을 보조할 수 있는 방안을 제안한다. 5G 스마트폰은 MIMO 안테나를 사용하여 통신을 하는데, MIMO 안테나는 기존의 전 방향성 안테나와는 달리 방향성을 가지고, 고주파를 사용하기 때문에 신호의 직진성을 보장받는다. 이러한 특성을 활용하여 스마트폰을 참조 노드로 하여 로봇 청소기는 측위를 보조할 수 있다. 본문에서 제안하는 아이디어를 소개하며, Matlab을 활용하여 아이디어의 효용성을 검증하였다.

  • PDF

Analysis & Implementation of SISO, SIMO, MISO and MIMO in 5G Communication Systems Based on SDR

  • Meriem DRISSI;Nabil BENJELLOUN;Philippe DESCAMPS;Ali GHARSALLAH
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.140-146
    • /
    • 2023
  • With the rapid growth of new users and massive need for very high data rate in 5G communications system, different technologies have been developed and applied to enhance communication efficiency. One of those technologies is the MISO, MISO and MIMO which transmits and receives information with more reliability by using multiple antennas on transmitter or/and receiver side. This paper presents the latest trends in 5G telecommunications system based on software defined radio, A novel low-cost SIMO, MISO and MIMO using flexibility between USRP and Simulink is implemented tested and validated.

Sum-Rate Improvement Method Using Quasi-Orthogonal Beam Pairs for UCA MIMO Transmission (UCA MIMO 전송 시 준직교적 빔 쌍을 활용한 합 전송률 향상 방안)

  • Yang, Jiyeong;Kim, Huiwon;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.32-35
    • /
    • 2018
  • Massive multiple-input multiple-output (MIMO) transmission is an essential technique for achieving the high bandwidth efficiency required in 5G mobile communication systems. Various forms of arrays can be used as the number of antenna elements increases for massive MIMO transmission. In this letter, we propose a beamforming algorithm applicable to multiuser MIMO transmission using uniform circular arrays. By employing quasi-orthogonal beam pairs obtained from the inter-beam correlation information, we minimize inter-user interference and evaluate the resulting performance gain.

System-Level Performance of Limited Feedback Schemes for Massive MIMO

  • Choi, Yongin;Lee, Jaewon;Rim, Minjoong;Kang, Chung Gu;Nam, Junyoung;Ko, Young-Jo
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.280-290
    • /
    • 2016
  • To implement high-order multiuser multiple input and multiple output (MU-MIMO) for massive MIMO systems, there must be a feedback scheme that can warrant its performance with a limited signaling overhead. The interference-to-noise ratio can be a basis for a novel form of Codebook (CB)-based MU-MIMO feedback scheme. The objective of this paper is to verify such a scheme's performance under a practical system configuration with a 3D channel model in various radio environments. We evaluate the performance of various CB-based feedback schemes with different types of overhead reduction approaches, providing an experimental ground with which to optimize a CB-based MU-MIMO feedback scheme while identifying the design constraints for a massive MIMO system.

A High-Isolation MIMO Antenna with Dual-Port Structure for 5G Mobile Phones

  • Yang, Hyung-kyu;Lee, Won-Woo;Rhee, Byung-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1458-1470
    • /
    • 2018
  • In this letter, a new dual-port Multiple-Input Multiple-Output (MIMO) antenna is introduced which has two independent signal feeding ports in a single antenna element to achieve smaller antenna volumes for the 5G mobile applications. The dual-port structure is implemented by adding a cross coupled semi-loop (CCSL) antenna as the secondary radiator to the ground short of inverted-F antenna (IFA). It is found that the port to port isolation is not deteriorated when an IFA and CCSL is combined to form a dual-port structure. The isolation property of the proposed antenna is compared with a polarization diversity based dual-port antenna proposed in the literature [9]. The operating frequency range is 3.3-4.0 GHz which is suitable for places where $4{\times}4$ MIMO systems are supposed to be deployed such as in China, EU, Korea and Japan at the band ${\times}$ (3.3 - 3.8GHz. The measured 6-dB impedance bandwidths of the proposed antennas are larger than 700 MHz with isolation between the feeding ports higher than 18 dB [1-2]. The simulation and measurement results show that the proposed antenna concept is a very promising alternative for 5G mobile applications.

Performance Analysis of High-Speed 5G MIMO System in mmWave Band (mmWave대역에서 고속 이동상태 5G MIMO 시스템 성능 분석)

  • Lee, Byung-Jin;Ju, Sang-Lim;Kim, Nam-il;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.103-109
    • /
    • 2018
  • One of the 5G goals is provide to high data rates for users moving at high speeds, such as trains. High mobility scenarios such as high speed train (HST) scenarios are expected to be typical scenarios for fifth generation communication systems. As the HST develops rapidly, it is necessary to transmit wireless communication data to train passengers, and the communication speed required by users is gradually increasing. HST users require high network capacity and stable communication services regardless of the location or speed of the HST communication system. Therefore, a transmission frame is constructed for the 5G mobile communication system in the mm band to be used for the fifth generation mobile communication, the HST communication system is implemented, and the performance of the wideband non-stationary MIMO HST channel is analyzed in the HST scenario.

Compact Dual-Band MIMO Antenna with High Isolation Performance (소형 고 격리도 듀얼 밴드 MIMO 안테나)

  • Yeom, In-Su;Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.865-871
    • /
    • 2010
  • A compact dual-band(IEEE 802.11b: 2.4~2.5 GHz, 11a: 5.15~5.825 GHz) 2-channel MIMO antenna for PMP applications is presented. The proposed antenna is composed of a planar inverted F-shape antenna(PIFA) operating at 2 GHz band and a loop antenna operating at 5 GHz band. The proposed antenna is orthogonally arranged at the edge of the ground plane for polarization and pattern diversities with excellent isolation characteristics. The two PIFA antennas operating 2 GHz have connecting line($\lambda_g$/4) face to the feed point for high isolation and low correlation at 2 GHz band. The two loop antennas connected each other in the bottom side to improve the isolation at 5 GHz band. The proposed antenna has a sufficient gain in WLAN service band and is compact sized for the portable media player (PMP) applications.

Scheduling Scheme Proposition for Spectral Efficiency Improvement in FD-MIMO (FD-MIMO 시스템에서 주파수 효율 향상을 위한 스케줄링 기법 제안)

  • Kim, Young-Jae;Ju, Sang-Lim;Jeong, Won-Ho;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.8-14
    • /
    • 2017
  • In 4G mobile communication, data services of mobile communication began to be provided in earnest. As a result, services such as the internet and multimedia including the video have become the main contents in the recent wireless traffic. Accordingly, research on 5G mobile communication with higher transmission rate has been actively carried out. 5G mobile communication is expected to be based on 4G for compatibility with existing terminals. Therefore, the simulation of this paper is based on 4G and we propose a new user scheduling scheme based on the Max throughput scheduling algorithm to improve system performance. This paper derives the frequency efficiency and fairness to compare the existing user scheduling algorithm with the proposed user scheduling algorithm. The proposed scheme shows better frequency efficiency and fairness than Max throughput in all situations. This paper contributes to the research for improving the system performance of 5G mobile communication technology, and I hope that it will help some of the ongoing standardization work.