• Title/Summary/Keyword: 5E circular learning model

Search Result 1, Processing Time 0.016 seconds

The Effect of an Educational Program Based on the 5E Circular Learning Model for Changing Chemistry Teachers' Metamodeling Recognition (화학교사들의 메타모델링 인식 변화를 위한 5E 순환학습 모형 기반 교육프로그램의 효과)

  • Miyeon Seo;Juhye Park;Kihyang Kim;Seoung-Hey Paik
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.5
    • /
    • pp.259-273
    • /
    • 2024
  • This study aimed to investigate changes in metamodeling recognition among chemistry teachers through a teacher educational program related to redox models and water electrolysis experiments. To this end, a science model education program was developed for 9 chemistry teachers and conducted over 10 lessons for a total of 40 hours. In addition, a pre- and post-survey was administered to determine teachers' metamodeling recognition in non-contextual and contextual situations. As a result of the study, through the science model education program, teachers showed educational effects in both non-contextual and contextual situations. In the case of non-contextual situations, the stages of scientific metamodeling knowledge development of chemistry teachers came out differently depending on the type of question. For example, the nature or purpose of the model, the modeling process, or the evaluation and improvement of the model improved from low to high, but there was no significant change because the perception of model change and diversity was already high in advance. In the case of contextual situations, the stage of scientific metamodeling knowledge development improved from objectivity to subjectivity in both the redox model theory class and the water electrolysis model experiment class. Therefore, through the 5E circular learning model-based education program, chemistry teachers' perception of metamodeling was clearly improved. However, the modeling activities of teachers in the water electrolysis model experiment class were different from the change in metamodeling perception. The types that teachers selected as additional experiments for modeling were analyzed in two ways. The first type is when they are interested in finding an ideal condition in which the ratio of hydrogen and oxygen gas is close to 2:1 through additional experiments. The second type is when additional experiments are designed with interest in why the experimental results are coming out like that. It was analyzed that the second type was the experiment necessary for modeling. In addition, modeling activities were analyzed into two types. The first was a type in which water molecules were directly decomposed in two electrodes to generate hydrogen and oxygen gas. This type was the case of regression to the textbook model regardless of the experimental results, and 6 chemistry teachers out of 8 were analyzed as this type. The second type was the type in which water reacted at the (+) electrode to generate other substances, and hydrogen ions reacted at the (-) electrode to generate hydrogen gas. Teachers who performed these modeling activities corresponded to the second type in additional experiments, and 2 chemistry teachers out of 8 corresponded to this. Therefore, it is necessary to provide an experience of activities corresponding to the second type of experiment and modeling through an educational program that provides an experience of directly modeling through experiments in order to develop modeling capabilities, unlike the development of metamodeling knowledge.