• Title/Summary/Keyword: 53C25

Search Result 953, Processing Time 0.023 seconds

A Preliminary Study on Depressive Symptoms and Glycemic Controls in Diabetic Patients (당뇨병 환자에서의 우울 및 관련증상에 관한 예비적 연구)

  • Ko, Seung-Hyun;Jeong, Jong-Hyun;Hong, Seung-Chul;Han, Jin-Hee;Lee, Seung-Pil;Ahn, Yoo-Bae;Song, Ki-Ho
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.12 no.2
    • /
    • pp.165-173
    • /
    • 2004
  • Objectives: Diabetes mellitus is a heterogeneous, chronic, progressive disease characterized by hyperglycemia and abnormality in protein, carbohydrate, fat metabolism. Recent studies have reorted two times prevalence of depression in individuals with diabetes compared to individuals without diabetics. This study was designed to investigate glycemic controls, anxiety, alexithymia, stress responses between depressed diabetic patients and non-depressed diabetic patients. Methods The subjects were 60 diabetic patients(mean age : $50.3{\pm}9.7$ years, 31 men and 29 women) who were confirmed to have diabetes depending on the laboratory findings as welt as clinical symptoms at the St. Vincent Hospital Diabetes Clinic, from Mar. 2004 to Sep. 2004. Laboratory test including, blood chemistry. glycated hemoglobin, urinalysis for proteinuria and Korean version of Beck Depression Inventory(BDI), State and Trait Anxiety Inventory(STAI), Toronto Alexithymia Scale(TAS) and Stress Response Inventory(SRI) were used for assessment. Based on BDI scores, all diabetics were divided into 13 depressed-diabetics group(above 20 point) and 47 non-depressed group(below 20 point). We compared demographic data. glycemic controls, STAI, TAS and SRI scores between two groups by independent t-test. Results : 1) Depressed diabetic groups were 13(mean age : $55.4{\pm}7.2$ years, 7 men and 6 women) and non depressed groups were 47(mean age $48.9{\pm}9.8$ years, 24 men and 23 women). In depressed diabetics, compared with non-depressed group, manifested aged(p=0.031), but other demographic data showed no difference between two groups. 2) No significant differences were noted in FBS, PP2h, Hb A1C, total cholesterol, HDL-cholesterol, SGOT/SGPT, BUN levels between depressed and non-depressed groups. But, blood creatine levels of depressed group were significantly increased than non-depressed group(p=0.026). 3) No significant differences were found in the score of STAI, STAI-S, STAI-T, TAS between depressed and non-depressed groups. 4) The SRI scores of depressed groups were significantly higher than non-depressed groups$(59.7{\pm}24.9\;vs.\;31.5{\pm}22.0)(p=0.000)$. Conclusion : The above results suggest that depressed diabetic patients are have more stress responses and higher blood creatine levels. However, there were no differences in laboratory data related to glycemic controls, and anxiety. alexithymia levels between two groups. We suggest that physicians should consider integrated approaches for psychiatric problems in the management of diabetes.

  • PDF

THE FOOD AND GROWTH OF THE LARVAE OF THE ARK SHELL ANADARA BROUGHTONI SCHRENCK (피조개의 먹이와 성장)

  • Yoo Sung Kyoo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1969
  • The larvae of the ark shell Anadare broughtoni(Schrenck) were grown at room temporature (approximately $20.4^{\circ}C$), and fed laboratory-cultured Cyclotella nana. The egg of the ark shell produced in the laboratory measured about $54.9\mu$ in diameter. The embryos gradually developed into larvae up to $110.8\mu$ shell length, $83.9\mu$ shell height and with shell breadth of $58.2\mu$ even in the absence of the algal food. Beyond this sire, however, the growth of the larvae was considerably retarded. The larvae showed better growth rate when they were fed the algal food two days after spawning, i. e., early straight-hinge stage. Daily rate of food consumption varies according to the larval sizes. But the rate increases considerably when the larvae begin to form umbos. In general the rate Is indicated by the following formula: $Y=0.0025161\;X^{2.76459}$. The growth experiments of the larvae indicate that the efficiency of food conversion was higher when fed centrifuged food. Regarding to the difference in the slopes of growth curve, centrifuged food showed better growth rate as compared to those grown with the non-centrifuged food. The smaller the larval size, the greater will be the difference in growth. The larvae began settling when they reathed 261.7 to $289.6\;{\mu}$ in shell length, 199.2 to $221.7\mu$ in shell height and 147.6 to $170.8\mu$ in shell breadth. The time which elapsed from spawning to the larval settlement was about 28 days. The mean growth of the larvae is indicated with regression line and exponential curve equations as follows. Regression line shell length. 94.3 to $133.9\mu$ : Y==85.22857+3.35000X 141.6 to $269.3\mu$: Y=10.83036X-36.05357 296.8 to $373.2\mu$ : Y=19.10000X-279.30000 shell height: 72.7 to $89.7\mu$ : Y=67.11429+2.15714X 108.4 to $206.4\mu$ : Y=8.31607X-27.45357 228.6 to $282.1\mu$: Y=173.46700+13.37500X shell breadth: 45.3 to $77.8\mu$ : Y=38.08510X+2.73570X 87.4 to $157.7\mu$: Y=5.77320X-5.99640 175.4 to $214.0\mu$: Y=19.65000X-114.13300 Exponential curve shell length. 94.3 to $373.2\mu$: Y=72.45 $e^{0.04697x}$ shell height: 72.7 to $282.1\mu$: Y=54,96 $e^{0.04720x}$ shell breadth: 45.3 to $214.0\mu$ : Y=39.82 $e^{0.04927x}$ The relationships between the shell length and shell height and between the shell length and shell breadth are indicated as follows- shell height: 72.7 to $98.7\mu$ : Y=12.87780+0.63817X 108.4 to $206.4\mu$ : Y=0.90220+0.76456X 228.6 to $282.1\mu$ : Y=25.02630+0.69156X shell breadth: 45.3 to $77.8\mu$:Y=0.81373Xx-31.18914 87.4 to $157.7\mu$ : Y=13.37549+0.53230X 175.4 to $214.0\mu$: Y=30.24328+0.49545X

  • PDF

The Variation of Natural Population of Pinus densiflora S. et Z. in Korea (III) -Genetic Variation of the Progeny Originated from Mt. Chu-wang, An-Myon Island and Mt. O-Dae Populations- (소나무 천연집단(天然集團)의 변이(變異)에 관(關)한 연구(硏究)(III) -주왕산(周王山), 안면도(安眠島), 오대산(五臺山) 소나무집단(集團)의 차대(次代)의 유전변이(遺傳變異)-)

  • Yim, Kyong Bin;Kwon, Ki Won
    • Journal of Korean Society of Forest Science
    • /
    • v.32 no.1
    • /
    • pp.36-63
    • /
    • 1976
  • The purpose of this study is to elucidate the genetic variation of the natural forest of Pinus densiflora. Three natural populations of the species, which are considered to be superior quality phenotypically, were selected. The locations and conditions of the populations are shown in table 1 and 2. The morphological traits of tree and needle and some other characteristics were presented already in our first report of this series in which population and family differences according to observed characteristics were statistically analyzed. Twenty trees were sampled from each populations, i.e., 60 trees in total. During the autumn of 1974, matured cones were collected from each tree and open-pollinated seeds were extracted in laboratory. Immediately after cone collection, in closed condition, the morphological characteristics were measured. Seed and seed-wing dimensions were also studied. In the spring of 1975, the seeds were sown in the experimental tree nursery located in Suweon. And in the April of 1976, the 1-0 seedlings were transplanted according to the predetermined experimental design, randomized block design with three replications. Because of cone setting condition. the number of family from which progenies were raised by populations were not equal. The numbers of family were 20 in population 1. 18 in population 2 and 15 in population 3. Then, each randomized block contained seedlings of 53 families from 3 populations. The present paper is mainly concerned with the variation of some characteristics of cone, seed, needle, growth performance of seedlings, and chlorophyll and monoterpene compositions of needles. The results obtained are summerized as follows. 1. The meteorological data obtained by averaging the records of 30 year period, observed from the nearest station to each location of populations, are shown in Fig. 3, 4, and 5. The distributional pattern of monthly precipitation are quite similar among locations. However, the precipitation density on population 2, Seosan area, during growing season is lower as compared to the other two populations. Population 1. Cheong-song area, and population 3, Pyong-chang area, are located in inland, but population 2 in the western seacoast. The differences on the average monthly air temperatures and the average monthly lowest temperatures among populations can hardly be found. 2. Available information on the each mother trees (families) studied, such as age, stem height, diameter at breast height, clear-bole-length, crown conditions and others are shown in table 6,7, and 8. 3. The measurements of fresh cone weight, length and the widest diameter of cone are given in Tab]e 9. All these traits arc concerned with the highly significant population differences and family differences within population. And the population difference was also found in the cone-index, that is, length-diameter ratio. 4. Seed-wing length and seed-wing width showed the population differences, and the family differences were also found in both characteristics. Not discussed in this paper, however, seed-wing colours and their shapes indicate the specificity which is inherent to individual trees as shown in photo 3 on page 50. The colour and shape are fully the expression of genetic make up of mother tree. The little variations on these traits are resulted from this reason. The significant differences among populations and among families were found in those characteristics, such as 1000-seed weight, seed length, seed width, and seed thickness as shown in table 11. As to all these dimensions, the values arc always larger in population 1 which is younger in age than that of the other two. The population differences evaluated by cone, seed and seed-wing sizes could partly be attributed to the growth vigorousity. 5. The values of correlation between the characteristics of cone and seed are presented in table 12. As shown, the positive correlations between cone diameter and seed-wing width were calculated in all populations studied. The correlation between seed-wing length and seed length was significantly positive in population 1 and 3 but not in population 2, that is, the r-value is so small as 0.002. in the latter. The correlation between cone length and seed-wing length was highly significant in population 1, but not in population 2. 6. Differences among progenies in growth performances, such as 1-0 and 1-1 seedling height and root collar diameter were highly singificant among populations as well as families within population(Table 13.) 7. The heritability values in narrow sense of population characteristics were estimated on the basis of variance components. The values based on seedling height at each age stage of 1-1 and 1-0 ranged from 0.146 to 0.288 and the values of root collar diameter from 0.060 to 0.130. (Table 14). These heritability values varied according to characteristics and seedling ages. Here what must be stated is that, for calculation of heritability values, the variance values of population was divided by the variance value of environment (error) and family and population. The present authors want to add the heritability values based on family level in the coming report. It might be considered that if the tree age is increased in furture, the heritability value is supposed to be altered or lowered. Examining the heritability values studied previously by many authors, in pine group at age of 7 to 15, the values of height growth ranged from 0.2 to 0.4 in general. The values we obtained are further below than these. 8. The correlation between seedling growth and seed characteristics were examined and the values resulted are shown in table 16. Contrary to our hypothetical premise of positive correlation between 1-0 seedling height and seed weight, non-significance on it was found. However, 1-0 seedling height correlated positively with seed length. And significant correlations between 1-0 and 1-1 seedling height are calculated. 9. The numbers of stomata row calculated separately by abaxial and adaxial side showed highly significant differences among populations, but not in serration density. On serration density, the differences among families within population were highly significant. (Table 17) A fact must be noted is that the correlation between stomata row on abaxial side and adaxial side was highly significant in all populations. Non-significances of correlation coefficient between progenies and parents regarding to stomata row on abaxial side were shown in all populations studied.(Table 18). 10. The contents of chhlorophyll b of the needle were a little more than that of chlorophyll a irrespective of the populations examined. The differences of chlorophyll a, b and a plus b contents were highly significant but not among families within populations as shown in table 20. The contents of chlorophyll a and b are presented by individual trees of each populations in table 21. 11. The occurrence of monoterpene components was examined by gas liquid chromatography (Shimazu, GC-1C type) to evaluate the population difference. There are some papers reporting the chemical geography of pines basing upon monoterpene composition. The number of populations studied here is not enough to state this problem. The kinds of monoterpene observed in needle were ${\alpha}$-pinene, camphene, ${\beta}$-pinene, myrcene, limonene, ${\beta}$-phellandrene and terpinolene plus two unknowns. In analysis of monoterpene composition, the number of sample trees varied with population, I.e., 18 families for population 1, 15 for population 2 and 11 for population3. (Table 22, 23 and 24). The histograms(Fig. 6) of 7 components of monoterpene by population show noticeably higher percentages of ${\alpha}$-pinene irrespective of population and ${\beta}$-phellandrene in the next order. The minor Pinus densiflora monoterpene composition of camphene, myrcene, limonene and terpinolene made up less than 10 percent of the portion in general. The average coefficients of variation of ${\alpha}$-pinene and ${\beta}$-phellandrene were 11 percent. On the contrary to this, the average coefficients of variation of camphene, limonene and terpinolene varied from 20 to 30 percent. And the significant differences between populaiton were observed only in myrcene and ${\beta}$-phellandrene. (Table 25).

  • PDF