• Title/Summary/Keyword: 5-lipoxygenase

Search Result 188, Processing Time 0.032 seconds

Study on the Action by PAF on IL-1 Modulation in Alveolar Macrophages: Involvement of Endogenous Arachidonate Metabolites and Intracellular $Ca^{++}$ Mobilization

  • Lee, Ji-Hee;Kim, Won-Ki;Hah, Jong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.241-249
    • /
    • 1998
  • Platelet-activating factor(PAF) enhanced interleukin-1(IL-1) activity by the interaction with a specific receptor in rat alveolar macrophages. In this study, we investigated the role of endogenous arachidonate metabolites and intracellular calcium mobilization in the PAF-induced IL-1 activity. Alveolar macrophages were preincubated with 5-lipoxygenase and cyclooxygenase inhibitors 30 min before the addition of PAF and lipopolysaccharide(LPS). After 24h culture, IL-1 activity was measured in the supernate of sample using the thymocyte proliferation assay. Inhibition of 5-lipoxygenase by nordihydroguaiaretic acid and AA-861 completely blocked the PAF-induced enhancement of IL-1 activity with $IC_{50}\;of\;2\;{\mu}M\;and\;5\;{\mu}M$, respectively. In contrast, the inhibition of cyclooxygenase pathway by indomethacin and ibuprofen resulted in the potentiation in PAF-induced IL-1 activity with maximal effect at $1\;{\mu}M\;and\;5\;{\mu}M$, respectively. In addition, leukotriene $B_4$ and prostaglandin $E_2$ production were observed in PAF-stimulated alveolar macrophage culture. As could be expected, 5-lipoxygenase and cyclooxygenase inhibitors abolished PAF- stimulated leukotriene $B_4$ and prostaglandin $E_2$ production, respectively. The effects of PAF on intracellular calcium mobilization in alveolar macrophages were evaluated using the calcium-sensitive dye fura-2 at the single cell level. PAF at any dose between $10^{-16}\;and\;10^{-8}$ M did not increase intracellular calcium. Furthermore, there was no effective change of intracellular calcium level when PAF was added to alveolar macrophages in the presence of LPS or LPS+LTB4, and 4, 24 and 48h after treatment of these stimulants. Together, the results indicate that IL-1 activity induced by PAF is differently regulated through subsequent induction of endogenous 5-lipoxygenase and cyclooxygenase pathways, but not dependent on calcium signalling pathway.

  • PDF

Structure-Activity Relationship. A Theoretical Study of Catechol Derivatives as 5-Lipoxygenase Inhibitor (구조-활성 상관관계. 5-Lipoxygenase의 저해제인 Catechol류에 관한 이론적 연구)

  • Park, Seongsik;Kim, Sang-Yun;Chung, Duk-Young;Yoh, Soo-Dong
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.9
    • /
    • pp.741-748
    • /
    • 1995
  • Various catechol derivatives inhibiting 5-lipoxygenase were studied with theoretical calculations and QSAR study. It was hypothesized that receptor site model could accept the active site of the catechol derivatives. The molecular length, molecular surface area, C5 net charge, HOMO/LUMO energy, van der Waals surface area and volume were used as variables to find the relationships between activity and physicochemical parameters.

  • PDF

Biochemical Characterization of the Dual Positional Specific Maize Lipoxygenase and the Dependence of Lagging and Initial Burst Phenomenon on pH, Substrate, and Detergent during Pre-steady State Kinetics

  • Cho, Kyoung-Won;Jang, Sung-Kuk;Huon, Thavrak;Park, Sang-Wook;Han, Ok-Soo
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.100-106
    • /
    • 2007
  • The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (Km and kcat values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.

A New Soybean Cultivar "Gaechuck#1" : Black Soybean Cultivar with Lipoxygenase2,3-free, Kunitz Trypsin Inhibitor-free and Green Cotyledon

  • Chung, Jong Il
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.603-606
    • /
    • 2009
  • Lipoxygenase and Kunitz trypsin inhibitor protein of mature soybean [Glycine max (L.) Merr.] seed are main anti-nutritional factors in soybean seed. A new soybean cultivar, "Gaechuck#1" with the traits of black seed coat, green cotyledon, lipoxygenase2,3 and Kunitz trypsin inhibitor protein free was developed. It was selected from the population derived the cross of "Gyeongsang#1" and C242. Plants of "Gaechuck#1" have a determinate growth habit with purple flowers, brown pubescence, black seed coat, black hilum, oval leaflet shape and brown pods at maturity. Seed protein and oil content on dry weight basis have averaged 39.1% and 16.2%, respectively. It has shown resistant reaction to soybean necrosis, soybean mosaic virus, Cercospora leaf spot and blight, black root rot, pod and stem blight, and soybean pod borer. "Gaechuck#1" matured on 5-10 October with a plant height of 50 cm. The 100-seed weight of "Gaechuck#1" was 23.2g. Yield of "Gaechuck#1" was averaged 2.2 ton/ha from 2005 to 2007.

Selection of Lipoxygenase, Kunitz Trypsin inhibitor and 7Sα′-subunit Protein Free Soybean Strain (Lipoxygenase, Kunitz Trypsin inhibitor, 7Sα′-subunit 단백질이 결핍된 콩 계통의 선발)

  • Sung, Mi-Kyung;Kim, Kyung-Roc;Park, Jung-Soo;Han, Eun-Hui;Nam, Jin-Woo;Chung, Jong-Il
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.29-33
    • /
    • 2010
  • Soybean (Glycine max (L.) Merr.) seed is the main source of protein and oil for human and animal. The use of soybean protein has been expanded in the food industry due to their excellent nutritional benefits. But, antinutritional and allergenic factors are exist in the raw mature soybean. Lipoxygenase, Kunitz trypsin inhibitor (KTI) protein, and ${\alpha}^{\prime}-subunit$ of 7S globulin are main antinutritional factors in soybean seed. Breeding of a new soybean strain with lacking these components is needed. The objective of this research was to select new soybean line with lipoxygenase-free, KTI-free, and ${\alpha}^{\prime}-subunit$ free (lx1lx1lx2lx2lx3lx3titicgy1cgy1 genotype). Total 434 $F_2$seeds were obtained from the cross of cultivar, "Gaechuck#2" and PI506876. Presence and absence of lipoxygenase, KTI protein, and ${\alpha}^{\prime}-subunit$ of 7S globulin was tested by SDS electrophoresis using a partial seed of each $F_2$seed. Only one $F_2$seed with lacking these three components was selected and was planted to $F_2$plant. Absence of lipoxygenase, KTI, and ${\alpha}^{\prime}-subunit$ protein was confirmed on the $F_3$seeds harvested. Selected line with lx1lx1lx2lx2lx3lx3titicgy1cgy1 genotype might be useful for soybean breeding.

Anti-inflammatory Effect of Biotin and Plant extracts

  • Y. J. Joo;S. W. Jung;Kim, B. R.;Kim, I. Y.;Lee, J. D.;H. C. Ryoo;Lee, S. H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.601-610
    • /
    • 2003
  • Biotin is a water-soluble vitamin used as a skin conditioning agent and promotes the formation of intercellular lipid layers through increased lipid synthesis, which improves the skin's natural barrier function. The anti-inflammatory effects of biotin have been investigated using in vitro assay models, such as MTT assay, measurements of concentrations of nitric oxide(NO), prostaglandin E2(PGE$_2$), and inhibition rate of 5-lipoxygenase(5-LOX). In comparison with biotin, other plant extracts were tested at the same time which were kudzu vine extract, sage extract, paeonia extract, and dipotassium glycyrrhetinate. Nitric oxide is a signal molecule with functions such as neurotransmission, local vascular relaxation, and anti-inflammation in many physiological and pathological processes. NO can cause apoptosis and necrosis of target cells such as keratinocytes and is generated from L-arginine by nitric oxide synthase (NOS). Prostanoids, including prostaglandins and thromboxanes, are generated by the phospholipase $A_2$/cyclooxygenase(COX) pathway, and leukotrienes are generated by the 5-lipoxygenase pathway from arachidonic acid. Prostaglandin E2 recently have been shown to be beneficial in the resolution of tissue injury and inflammation, also has been implicated as an immunosuppressive agent and plasma levels of PGE$_2$ are elevated in patients sustaining thermal injury. Lipoxygenase metabolites from arachidonic acid have been implicated in inflammation, anti-inflammatory activity of the raw materials was evaluated in vitro by the offered inhibition of lipoxygenase.

  • PDF

Enzymatic Assessment of $2-Hydroxyethyl-{\beta}-undecenate$ Purified from Cumin (Cuminum cymium L.) Seed for Anti-periodontitis (Cumin(Cuminum cymium L.) seed로부터 정제한 $2-hydroxyethyl-{\beta}-undecenate$의 항치주염 효과의 효소학적 평가)

  • Ryu, Il-Hwan;Kang, Eun-Ju;Lee, Kap-Sang;Park, Chung-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.669-675
    • /
    • 2007
  • The present study was conducted to explore the anti-inflammatory action of $2-hydroxyethyl-{\beta}-undecenate$ (HPS) purified from Cumin (Cuminum cymium L.) seed against periodontitis. From the study in which human leukocyte was employed to detect the inhibiting effects of 5-lipokygenase and cyclooxygenase, enzymes generating carriers of infection like $LTB_4$ and PGs, as well as of collagenase and elastase, organ-destroying enzymes, following conclusions could be drawn: HPS was found to inhibit leukotrien $B_4$ biosynthesis by stimulating more than 97% of human polymorphonuclear leukocyte (PMNL) with addition of $5\;{\times}\;10^{-2}\;M$ when $IC_{50}$ was set at $2\;{\times}\;10^{-4}\;M$. Ninety-two percent of enzyme activation turned out to be inhibited when $5\;{\times}\;10^{-2}\;M$ was added in a test to prove inhibiting effects of HPS against activation of PMNL 5-lipoxygenase from homogeneous humans and purified 5-lipoxygenase on the market. Besides, $IC_{50}$ for enzyme activation was valued at $2.5\;{\times}\;10^{-4}\;M$, while the value of $IC_{50}$ for purified 5-lipoxygenase was $2.3\;{\times}\;10^{-4}\;M$. The $IC_{50}$ values of COX-activated leukocyte and purified collagenase were $5.1\;{\times}\;10^{-4}\;M$ and $2.3\;{\times}\;10^{-4}\;M$, respectively. Moreover, the value of $IC_{50}$ for activation of leukocyte collagenase was $2\;{\times}\;10^{-3}\;M$, whereas that for purified collagenase was $5\;{\times}\;10^{-2}\;M$. In case of leukocyte elastase, addition of $5\;{\times}\;10^{-2}\;M$ inhibited its activation by 66%. In case of purified one, however, activation of enzyme was inhibited by 25% with addition of $5\;{\times}\;10^{-2}\;M$. Furthermore, the $IC_{50}$ value for activation of leukocyte elastase was revealed to be $7.5\;{\times}\;10^{-3}\;M$. From the virulence test with human gingiva cell, it was shown that, on the second day of cultivation, 47.83% of the cell had been activated when HPS was added by $5\;{\times}\;10^{-2}\;M$. Even the addition of HPS by $1\;{\times}\;10^{-2}\;M$ featured 68.53% of cell activation, suggesting relatively strong toxicity of the substance against gingiva cell.

Purification and Characterization of Mungbean Lipoxygenase (녹두 Lipoxygenase의 정제 및 특성)

  • Kim, Seung-Yeol;Lee, Hee-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.295-299
    • /
    • 1987
  • Mungbean Lipoxygenase was purified by ammonium sulfate fractionation, DEAE-sephacel column chromatography and sephadex G-200 gel filtration. The specific activity of pfurified enzyme was 23.4U/mg protein and the yield was 12%. Optimal activity of the enzyme was observed at pH 8.4 and the enzyme had Km value of 0.25mM for linoleic acid. The enzyme was stable in the range of pH 5.0-7.0 and at temperature below $50^{\circ}C$. The enzyme activity was inhibited by antioxidants such as nordihydroguiaretic arid and chelating agents.

  • PDF

The Regulatory Role of 5-Lipoxygenase in Mature Osteoclasts (5-Lipoxygenase에 의한 성숙 파골세포의 조절)

  • Noh, A Long Sae Mi;Moon, Miran;Jeong, Ji-Eun;Yim, Mijung
    • YAKHAK HOEJI
    • /
    • v.56 no.6
    • /
    • pp.347-351
    • /
    • 2012
  • 5-Lipoxygenase (5-LO) catalyzes the formation of two major groups of leukotrienes, LTB4 and cysteinyl leukotrienes (CysLT), and it has been implicated as a promising drug target to treat various inflammatory diseases. Since its role in mature osteoclasts (mOCs) had not been reported, we investigated the effect of 5-LO inhibitors on mOCs. We showed that 5-LO inhibitors dose-dependently decreases the number of mOCs. The effects of 5-LO inhibitors were reversible, suggesting that they did not cause any cellular damages in mOCs. We further demonstrated that the suppression of mOCs by 5-LO inhibitors was caused mainly by disruption of the actin ring formation. Similar effects were shown with CysLT receptor (CysLTR)1 antagonist in mOCs. The mRNA expression of CysLTR1 and the production of CysLT were increased in mOCs. These results indicate that CysLTR1 mediates the suppression of mOCs by 5-LO inhibitors. Taken together, this study demonstrated that 5-LO plays important role in mOCs and possibly a novel therapeutic target for bone resorption diseases.