• Title/Summary/Keyword: 5-hydroxy methyl furfural (5-HMP)

Search Result 1, Processing Time 0.017 seconds

The Antioxidant Effect of Hot Water Extract from the Dried Radish (Raphanus sativus L.) with Pressurized Roasting (가압볶음 무말랭이 열수 추출물의 항산화 효과)

  • Song, Yeong-Bok;Choi, Jeong-Sun;Lee, Ji-Eun;Noh, Jeong-Sook;Kim, Mi-Jeong;Cho, Eun-Ju;Song, Yeong-Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1179-1186
    • /
    • 2010
  • The antiradical property of hot water extract from dried radish (DR) or dried radish roasted with pressure (DRRP) was investigated in vitro and in LLC-PK1 cell system. The contents of total free amino acid and reducing sugar in DR were decreased by 72.86% and 3.17%, respectively, after pressurized roasting. In vitro test, $IC_{50}$ for DR and DRRP for DPPH radical scavenging activity were 646.70 and $135.45\;{\mu}g/mL$, 896.10 and $566.98\;{\mu}g/mL$ for superoxide anion radical, and 722.26 and $531.84\;{\mu}g/mL$ for hydroxy radical, respectively. The radical scavenging effects of DRRP was significantly greater than those for DR (p<0.001). These radical scavenging effects of DR and DRRP were confirmed in LLC-$PK_1$ at which oxidative stresses were induced by superoxide, nitric oxide and peroxynitrite generated in the treatment of pyrogallol, SNP, and SIN-1, respectively. Cell viability was increased in the presence of DR or DRRP, dose dependently (p<0.05), and TBARS formation was decreased. The protective effects of DRRP against oxidative damage in LLC-$PK_1$ were greater than those of DR at the same concentration tested (p<0.05). This superior antiradical activity of DRRP might be due to the products produced during the pressurized roasting in addition to the antioxidative compounds originally present in the radish. 5-hydroxyl methyl furfural (5-HMF) known as an intermediate product of the maillard reaction was detected in DRRP (0.57 mg/g), but not from DR. In conclusion, daily consumption of DRRP may prevent oxidative damage by retarding oxidative stress.