• Title/Summary/Keyword: 5-hole pitot tube

Search Result 15, Processing Time 0.015 seconds

Effect of Circumferential Velocity from Guide Vane on the Nozzle Flow of a Jet Fan (제트팬 노즐내부 유동에 대한 고정익 출구 원주속도의 영향)

  • 최충현;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.209-216
    • /
    • 2001
  • A numerical study is peformed to investigate the effect of circumferential velocity generated by the guide vane on the nozzle flow of a jet fan, s a way of increasing the penetration force of jet fan with nozzle of 175mm diameter. For the validation of numerical results. the velocity is measured by a 5-hole pitot tube and flow visualization is conducted by the tuft method. Under the inlet condition that the maximum circumferential velocity in the stator outlet of the present jet fan is 1.8m/s, the axial velocity in the nozzle outlet has the feature that the velocity at the axis is low and the velocity near the wall high. Therefore, to increase the throw length of the jet fan, the configuration of the fairing and nozzle needs to be developed and the precise revise of the stator angle is required, In addition, the bigger the circumferential velocity, the smaller the axial velocity at the axis and the bigger non-uniformity of the flow distribution.

  • PDF

A study on flow around a passenger vehicle model (승용차 모형주위의 유동에 관한 연구)

  • 장성원;유정열;이택식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.53-62
    • /
    • 1990
  • A wind tunnel experiment for the flow around a 1/5 scale passenger vehicle model has been carried out. A 5-hole Pitot tube is used for measuring velocity distributions around the model and a scanivalve with 48 ports is used for measuring surface pressure distribution at various Reynolds numbers. In order to observe the flow on the surface and in the wake region, a flow visualization experiment has been performed using wool tuft with and without paper cones. In addition, a 2-dimensional viscous calculation considering only the mid-plane section of the model has been performed. A complex wake structure in the immediate rear of the model has been confirmed. The distributions of the surface pressure coefficient are not sensitively dependent on the Reynolds Number. In the first half of the model, they do not seem to vary form section to section. However, in the second half, they do vary from section to section, especially at the bottom surface, which indicates that the cross flow vortex is more affected by the bottom surface than the top surface. The qualitative agreement of the measured and calculated velocity field also explains the usefulness of the 2-dimensional calculation in the limited sense.

  • PDF

The effect of position of propeller fan relative to duct inlet on flow characteristics (프로펠러 팬과 덕트와의 상대위치가 유동특성에 미치는 영향)

  • Sim, W.C.;Cho, K.R.;Joo, W.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.14-22
    • /
    • 1997
  • The position of propeller fan from duct inlet is one of basic parameters for the design of propeller fan. To investigate the effect of its position on fan characteristics, the inlet flow fields and relative flow angles were measured by a 5-hole pitot tube. The experimental results indicate that the ratio of radial flow introduced from propeller circumference to total inlet flow increases with the increase of propeller distance from duct inlet. When fan operates without duct, the total flow rate and the radial flow ratio are higher than those of any other positions of propeller relative to duct inlet. The radial flow ratio decreases as a flow coefficient and the propeller distance decrease. Therefore the front flow fields can be adjusted in some extent by varying the propeller distance according to a fan loading. The inlet flow angles are decreasing a little as a rotational speed and the propeller distance decrease. In the present case it was judged that the deviation angle of outlet flow became negative owing to a flow separation near a trailing edge.

  • PDF

Instrumentation for Performance Test of Turbo Compressor (터보 압축기 성능시험을 위한 계측기기 선정)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.46-52
    • /
    • 2008
  • The instrumentation was studied in order to measure aerodynamic performance and efficiency of a compressor as a component of a 5MW-class gas turbine for power generation. In case of an axial compressor, the distributions of static pressure on a casing can be obtained by averaging at each stage and those of total pressure and temperature in the flow field of the compressor can be measured with a Kiel temperature probe. In case of a centrifugal compressor, the static pressures at the hub and the tip, respectively, of an impeller exit are considerably different, so the pressures need to be measured at both positions and thereafter averaged. The distributions of static pressures in a diffuser and a deswirler are measured at ten positions along five streamlines in one pitch. In addition the flow field can be measured in detail by 5-hole Pitot tube in order to analyze the flow characteristics of the core flow region and wake region and the rotor-stator interaction of the compressor.

  • PDF

A Numerical Method & Experiments for the Aerodynamic Design of High Performance 2-Stage Axial Flow Fans (고성능 2단 축류송풍기의 공력설계를 위한 수치해석 및 실험에 관한 연구)

  • Cho, Jinsoo;Han, Cheolhui;Cho, Leesang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1048-1062
    • /
    • 1999
  • A numerical method and experiments for the aerodynamic design of high performance two-stage axial flow fans was carried out. A vortex ring element method used for the aerodynamic analysis of the propellers was extended to the fan-duct system. Fan Performance and velocity profiles at the fan inlet and outlet are compared with experimental data for the validations of numerical method. Performance test was done based on KS B 6311(testing methods for turbo-fans and blowers). The velocity profile was obtained using a 5-hole pitot tube by the non-nulling method. The two stage axial flow fan configurations for the optimal operation conditions were set by using the experimental results for the single rotating axial flow fan and the single stage axial flow fan. The single rotating axial flow fan showed relatively low efficiency due to the swirl velocities behind rotor exit which produced pressure losses. In contrast, the single stage and the two-stage axial flow fans showed performance improvements due to the swirl velocity reduction by the stator. The peak efficiency of the two stage axial flow fan was improved by 21% and 6%, compared to the single rotating axial flow fan and the single stage axial flow fan, respectively.