• Title/Summary/Keyword: 5-D PIV

Search Result 68, Processing Time 0.023 seconds

Stereoscopic micro-PIV measurements of jet flow (미세제트 유동의 Stereoscopic micro-PIV측정)

  • Yu, Cheong-Hwan;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.43-48
    • /
    • 2007
  • Micro-PIV(particle image velocimetry) has been widely used to measure the velocity of micro flow. Although this micro-PIV method can give accurate 2D instantaneous velocity information of mea-surement plane, it cannot resolve the out of plane component of velocity vectors. Lots of the micro fluidic devices generate three-dimensional flow and 3D measurement of velocity is useful to understand the physics of micro flow phenomena. In this study, we constructed stereoscopic micro-PIV(SMPIV) system and applied this method to the impinging micro jet flow. The results show that this method can produce accu-rate 3D reconstruction of micro jet flow.

Development of Stereoscopic PIV Measurement Technique and Its Application to Wake behind an Axial Fan (Stereoscopic PIV 기법의 개발과 이를 이용한 축류 홴 후류의 유동해석)

  • Yun, Jeong-Hwan;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.362-373
    • /
    • 2002
  • A stereoscopic PIV (SPIV) measurement system based on the translation configuration was developed and applied to the flow behind a forward-swept axial-fan. Measurement of three orthogonal velocity components is essential for flow analysis of three-dimensional flows such as flow around a fan or propeller. In this study, the translation configuration was adopted to calculate the out-of-plane velocity component from 2-D PIV data obtained from two CCD cameras. The error caused by the out-of-plane motion was estimated by direct comparison of the 2-D PIV and 3-D SPIV results that measured from the particle images captured simultaneously. The comparison shows that the error ratio is relatively high in the region of higher out-of-plane motion near the axial fan blade. The turbulence intensity measured by the 2-D PIV method is bigger by about 5.8% in maximum compared with that of the 3-D SPIV method. The phase-averaged velocity field results show that the wake behind an axial fan has a periodic flow structure with respect to the blade phase and the characteristic flow structure is shifted downstream in the next phase.

Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation (해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용)

  • Kim Mi-Young;Choi Jang-Woon;Lee Hyun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

PIV Measurement and Color Schlieren Observation of Supersonic Jets (PIV 및 컬러 쉴리렌 기법을 이용한 초음속 제트 관측)

  • Lee, Jae Hyeok;Zhang, Guang;Kim, Tae Ho;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.604-605
    • /
    • 2017
  • The present work aims at visualization of the supersonic air jet flows discharged from C-D nozzles. In the present experiments, Prticle Image Velocimetry (PIV) was employed to specify the jet flow field quantitatively, and a color Schlieren optical method was applied to observe the same jets qualitatively. The $0.5{\mu}s$ duration of spark light source was used for Schlieren and it can be controled as $0.5{\mu}s$, $1{\mu}s$, $2{\mu}s$ and focusing mode. The convergent-divergent nozzles were used to generate the jet flow with the design Mach number of 2.0, 2.2. Nozzle pressure ratios (NPRs) were varied from 5 to 8. A good comparison of the jet size and shock location from the Schlieren images with the PIV quantitative values is obtained. The obtained images clearly showed the major features of the under-expanded jet, over-expanded jet, sound wave, turbulent eddies and so on.

  • PDF

Measurements of a Ship's Propeller Wake with Stereoscopic-PIV and Stereoscopic-PTV (스테레오 PTV와 스테레오 PIV에 의한 선박프로펠러 후류측정)

  • Doh, Deog-Hee;Hwang, Tae-Gyu;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.2
    • /
    • pp.26-32
    • /
    • 2007
  • Stereoscopic PTV and Stereoscopic-PIV measurements have been carried out for the studies of the wake of a ship's propeller. Stereoscopic photogrammetry based on a 3D-PTV principle was introduced using two high-definition cameras(1k x 1k, 30Hz). The arrangement of the two cameras was based on angular position. The pair-matching of the three-dimensional velocity vectors were based on Genetic Algorithm based 3D-PTV technique. The results obtained by both measurement systems have been compared at the advance ratio J=0.88(290 rpm, d=54 mm). Turbulent properties have also been compared each other at the same condition.

On the Viscous Flow Around Breaking Waves Generated by a Submerged Cylinder(Part 3 : Survey of Flow Field Using PIV Technique) (몰수실린더에 의하여 생성되는 쇄파주위 점성유동의 고찰(제3부 : PIV를 이용한 순간유동장 해석))

  • B.S. Hyun;Y.H. Shin;K.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.38-45
    • /
    • 2000
  • A breaking-wave caused by a cylinder moving under the free-surface is studied, which is designed to unveil the interaction between breaker and cylinder using PIV at CWC. The detailed structures of the vortical flow is obtained from the velocity field measured by PIV technique. The vorticity distribution behind the breaker and originated from the breaker. It has been obvious that the vortices from breaker greatly affect the whole wake field at S/D=1. Certainly PIV was confirmed to be a very versatile means to investigate the complex flow fields such as breaking wave.

  • PDF

Flow Characteristics in a Particle/Bubble Motion with Hybride PIV (Hybride PIV에 의한 단일입자/기포운동에 관한 연구)

  • Choi, Hae-Man;Terauchi, T.;Monji, H.;Matsui, G.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.7-12
    • /
    • 2002
  • As the first step to investigate the fundamental mechanism of a dispersed two-phase flow, we studied the detailed interactions between bubble or particle motion and flow around it. Experiments were carried out with a rising bubble or particle in stagnant water in a vertical pipe. Particles with different densities, and/or different shapes were used for comparison with a bubble. We adopted 3D-PTV (Three-Dimensional Particle Tracking Velocimetry) for measuring the bubble or particle motions, and PIV (Particle Image Velocimetry) for measuring the water flow simultaneously (Hybrid PIV). The experimental results showed that the oblate spheroidal solid particle rose along the longer axis direction at the point that the inclination of the longer axis reached the maximum, and the inclination direction changed after moving. The bubble moved to the direction that the spheroid's projected width grew up to the largest, and the minor axis of the oblate spheroidal body of the bubble was parallel to the moving direction. The trajectory of the center of the particle/bubble which was measured with 3D-PTV, was marked on the section (x-y) of the pipe. It exhibited the pattern of the particle/bubble motion.

PIV Measurement of Airflow in a Vertical Channel With Square Heat Source (정방형 발열체를 갖는 수직채널 내부의 공기유동 관한 PIV계측)

  • Bae, S.T.;Kim, D.K.;Kim, S.P.;Cho, D.H.;Lee, Y.H.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.35-41
    • /
    • 1997
  • An experimental study was carried out in a vertical channel with square heat source by visualization equipment with laser apparatus. The image processing system consists of one commercial image board slit into a personal computer and 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system which adopted two-frame grey-level cross correlation algorithm. Heat source was uniform heat flux(5W). The obtained results show various flow patterns such as the kinetic energy distribution and the turbulent kinetic energy distribution.

  • PDF

The Visualization of the Flowfield around Three Circular Cylinders in the Tandem Arrangement by the PIV (PIV에 의한 직렬배열 상태에 놓인 3원주 주위의 유동장 가시화)

  • Ro, Ki-Deok;Jang, Dong-Hyu;Bae, Hung-Sub;Kim, Won-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.264-270
    • /
    • 2011
  • The Characteristics of the flowfield around three circular cylinders in tandem arrangement was investigated by PIV. Strouhal numbers, vorticity, velocity vectors and velocity profiles were observed at centre-to-centre space ratios of P/D=1.25~3.75, and Reynolds number of Re=$3.0{\times}10^3{\sim}5.0{\times}10^3$. As the results the Strouhal numbers measured in the rear region of 3rd the cylinder were distinguished three kind of regions with the space ratios and The flow pattern in the wake of each cylinder was different according to these regions. The time averaged flow at region of each cylinder was almost stagnated and the size of the stagnated region was small in order of 1st, 2nd and 3rd cylinder. The direction of vortex at the front and rear region of 2nd cylinder was opposed each other with the small difference(${\alpha}= {\pm}5^{\circ}$) of the attack angle ${\alpha}$.

SPIV Flow Analysis of Turbulent Jet with Triangular Multi-Tabs (삼각형 멀티 탭이 부착된 난류제트에 대한 SPIV 유동해석 연구)

  • Jang Young Gil;Lee Sang Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.561-567
    • /
    • 2005
  • The effect of triangular multi-tabs attached at the perimeter of jet nozzle on flow structure in the near field was investigated experimentally. A stereoscopic PIV(SPIV) system was employed to measure three orthogonal velocity components of the 3-D turbulent jet. In this study, two different types of sharp-edged jet nozzle having 4, 8 tabs were tested at the Reynolds number of Re=10,000. SPIV measurements were carried out at 5 cross-sectional planes. Six hundred instantaneous velocity fields were measured for each experimental condition and they were ensemble averaged to get spatial distributions of turbulent statistics such as mean velocity and turbulence intensity. Entrainment rate of surrounding fluid into the tabbed jets was estimated using the measured 3-D velocity field data. The strong vortex structure was induced for the jet flow with 4 tabs, increasing entrainment rate.