• Title/Summary/Keyword: 5-Azacytidine

Search Result 25, Processing Time 0.034 seconds

Molecular Mechanisms of 5-Azacytidine-Induced Trifluorothymidine-Resistance In Chinese Hamster V79 Cells

  • Jin Kyong-Suk;Lee Yong-Woo
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.165-173
    • /
    • 2005
  • A potent demethylating agent, 5-Azacytidine (5-AzaC) has been widely used as in many studies on DNA methylation, regulation of gene expression, and cancer biology. The mechanisms of the demethylating activity were known to be formation of complex between DNA and DNA methyltransferase (MTase), which depletes cellular MTase activity. However, 5-AzaC can also induce hypermethylation of a transgene in a transgenic cell line, G12 cells and it was explained as a result of defense mechanisms to inactivate foreign gene(s) somehow. This finding evoked the question that whether the phenomenon of hypermethylation induced by 5-AzaC is limited to the transgene or it can be occurred in endogenous gene(s). In order to answer the question, mutagenicity test of 5-AzaC and molecular characterization of mutants obtained from the test were performed using an endogenous gene, thymidine kinase (tk) in Chinese hamster V79 cells. When V79 and V79-J3 subclone cells were treated with 1, 2.5 ,5, $10{\mu}M$ of 5-AzaC for 48 hours, their maximum mutant frequencies were revealed as $6\times10^{-3}\;at\;5{\mu}M$(350-fold induction over background) and $8\times10^{-3}\;at\;2.5{\mu}M$ (l,800-fold induction over background) respectively. Since the induction rates were too high to be induced by true mutations, many trifluorothymidine (TFT)-resistant $(TFT^R)$ cells were subjected to Northern blot analysis to check the presence of tk transcripts. Surprisingly, all clones tested possessed the transcripts in a similar level, that implicates the $TFT^R$ phenotype induced by 5-AzaC has not given rise to hypermethylation of the gene in spite of unusually high mutation frequency. In addition, it has shown that the TK activity in the pool of 5-AzaC-induced $TFT^R$ cells has about a half of that in spontaneously-induced $TFT^R$ cells or in non-selected parental V79-J3 cells. This result suggests that the mechanism(s) underlying the TFT-resistance between spontaneously occurred and 5-AzaC-induced cells may be different. These findings have shown that the $TFT^R$ phenotype induced by 5-AzaC has not given rise to hypermethylation of the tk gene, and 5-AzaC may be induced by one or combined pathways among many drug resistance mechanisms. The exact mechanisms for the 5-AzaC-induced $TFT^R$ phenotype remain to elucidate.

  • PDF

Mechanisms of 5-azacytidine-induced damage and repair process in the fetal brain

  • Ueno, Masaki
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.55-64
    • /
    • 2006
  • The fetal central nervous system (CNS) is sensitive to diverse environmental factors, such as alcohol, heavy metals, irradiation, mycotoxins, neurotransmitters, and DNA damage, because a large number of processes occur during an extended period of development. Fetal neural damage is an important issue affecting the completion of normal CNS development. As many concepts about the brain development have been recently revealed, it is necessary to compare the mechanism of developmental abnormalities induced by extrinsic factors with the normal brain development. To clarify the mechanism of fetal CNS damage, we used one experimental model in which 5-azacytidine (5AZC), a DNA damaging and demethylating agent, was injected to the dams of rodents to damage the fetal brain. 5AzC induced cell death (apoptosis)and cell cycle arrest in the fetal brain, and it lead to microencephaly in the neonatal brain. We investigated the mechanism of apoptosis and cell cycle arrest in the neural progenitor cells in detail, and demonstrated that various cell cycle regulators were changed in response to DNA damage. p53, the guardian of genome, played a main role in these processes. Further, using DNA microarray analysis, tile signal cascades of cell cycle regulation were clearly shown. Our results indicate that neural progenitor cells have the potential to repair the DNA damages via cell cyclearrest and to exclude highly affected cells through the apoptotic process. If the stimulus and subsequent DNA damage are high, brain development proceeds abnormally and results in malformation in the neonatal brain. Although the mechanisms of fetal brain injury and features of brain malformation afterbirth have been well studied, the process between those stages is largely unknown. We hypothesized that the fetal CNS has the ability to repair itself post-injuring, and investigated the repair process after 5AZC-induced damage. Wefound that the damages were repaired by 60 h after the treatment and developmental processes continued. During the repair process, amoeboid microglial cells infiltrated in the brain tissue, some of which ingested apoptotic cells. The expressions of genes categorized to glial cells, inflammation, extracellular matrix, glycolysis, and neurogenesis were upregulated in the DNA microarray analysis. We show here that the developing brain has a capacity to repair the damage induced by the extrinsic stresses, including changing the expression of numerous genes and the induction of microglia to aid the repair process.

  • PDF

Silencing of Disabled-2 Gene by CpG Methylation in Human Breast Cancer Cell Line, MDA MB-231 Cells (사람의 유방암 세포주인 MDA MB-231 세포에서 CpG 메칠화에 의한 Disabled-2유전자의 발현억제)

  • Ko Myung Hyun;Oh Yu Mi;Park Jun Ho;Jeon Byung Hoon;Han Dong Min;Kim Won Sin
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.802-808
    • /
    • 2005
  • Human Disabled-2 (Dab2) is a candidate tumor suppressor gone that regulates cell growth by c-Fos suppression in normal cells. In many cancer cells, Dab2 expression is lost or greatly diminished in $\∼85\%$ of the breast and ovarian cancers. In this study, we have examined the methylation status of CpG island on Dab2 gene promoter using bisulfite-assisted genomic sequencing and methylation specific PCR (MSP) method in human breast cancer cell line, MDA MB-231 cells. In normal human uterus endometrial cells, Dab2 was completely unmethylated. In contrast, Dab2 was methylated on CpG dinucleotides near the TATA_ box in MDA MB-231 cells. following MDA MB-231 cells by treatment with 5-azacytidine, Dab2 gene were demethylated and reexpressed. Result of this study suggested that silencing of Dab2 gene is correlated to CpG island methylation in human breast cancer cell line, MBA MD-231 cells.

Synthesis of 5-Azacytidine Nucleosides With Rigid Sugar Moiety As Potential Antitumor Agents

  • Kim, Myong-Jung;Lee, Ji-Young;Shin, Ji-Hye;Chun, Moon-Woo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.363.3-364
    • /
    • 2002
  • Unmodified nucleosides exist in either S-type or N-type conformation, but due to the low energy barrier between this two dominating conformers a fast equilibrium between them exists in solution state. Therefore. many approaches to lock the puckering of the furanose ring in N-type or S-type have been made since HIV-1 reverse transciptase is able to discriminate between two conformationally locked carbocyclic AZT triphosphate analogues. (omitted)

  • PDF

Characterization Analysis for Cardiogenic Potential of Three Human Adult Stem Cells (세 종류 줄기세포의 특성 분석과 지방유래 줄기세포의 심근세포로의 분화)

  • Park, Se-Ah;Kang, Hyeon-Mi;Kim, Eun-Su;Kim, Jin-Young;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.167-177
    • /
    • 2007
  • In the present study, we isolated three human adult stem cells including adipose tissue-derived stem cells(HAD), umbilical cord-derived stem cells(HUC), and amnion-derived stem cells(HAM) and analysed their characteristics. And we examined whether HAD could be used as therapeutical cells for the heart diseases. Both HAM and HUC appeared very similar morphology but HAD was different. Doubling time of HUC was most fast, but total doubling numbers of HUC was same with HAM. Total doubling numbers of HAD was much more than others. Expression patterns of genes and proteins of three human adult stem cells were very similar. Also they were differentiated into adipocytes, osteocytes, and chondrocytes. In addition, they expressed many cardiomyocyte-related genes. But expression pattern of genes is a little different. When HAD were cultivated in the presence or absence of various combinations of BMP and FGF after 5-azacytidine expose for 24 h, expression of Cmlc-1, and ${\alpha}1c$ genes was significantly increased. However, expression of troponin T, troponin I and Kv4.3 genes was not changed. Based on these observations, it is suggested that HAD, HUC, and HAM might be used as potentially therapeutical cells for clinical application.

  • PDF

The Rat Myosin Light Chain Promoter-Driven DsRed Reporter System Allows Specific Monitoring of Bone Marrow Mesenchymal Stem Cell- Derived Cardiomyocytes

  • Choi, Seung-Cheol;Lim, Do-Sun
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.21-25
    • /
    • 2008
  • Bone marrow mesenchymal stem cells (BMMSCs) have the capacity for self-renewal and differentiation into a variety of cell types. They represent an attractive source of cells for gene and cell therapy. The purpose of this study is to direct the specific expression of the DsRed reporter gene in $Sca-1^+$ BMMSCs differentiated into a cardiomyogenic lineage. We constructed the prMLC-2v-DsRed vector expressing DsRed under the control of the 309 tp fragment of the rat MLC-2v 5'-flanking region. The specific expression of the DsRed reporter gene under the transcriptional control of the 309 bp fragment of the rat MLC-2v promoter was tested in 5-azacytidine healed-$Sca-1^+$ BMMSCs over 2 weeks after the prMLC-2v-DsRed transfection. The prMLC-2v-DsRed was specifically expressed in the $Sca-1^+$ BMMSCs with cardiomyogenic lineage differentiation and it demonstrates that the 309 bp sequences of the rat MLC-2v 5'-flanking region is sufficient to confer cardiac specific expression on a DsRed reporter gene. The cardiac-specific promoter-driven reporter vector provides an important tool for the study of stem cell differentiation and cell replacement therapy in ischemic cardiomyopathy.

Comparisons of Development Potential in Bovine SCNT Embryos using Donor Cells treated with Different Demethylating Inhibitors

  • Jeon, Byeong-Gyun;Jeong, Gie-Joon;Rho, Gyu-Jin
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.229-237
    • /
    • 2015
  • To improve the developmental potential of bovine somatic cell nuclear transfer (SCNT) embryos, this study compared the developmental rates to blastocyst stage in the SCNT embryos using donor fibroblasts treated with 5-azacytidine (5AC) and S-adenosylhomocysteine (SAH) at different concentrations. Their reprogramming efficiency level was investigated with level of telomerase activity. Donor fibroblasts isolated from adult ear skin of a cow were exposed to 5AC and SAH at different concentrations during 2 passages. After nuclear transfer into enucleated recipient oocytes, the cleavage and developmental rates were significantly (p<0.05) decreased in the SCNT embryos using 5AC-treated fibroblasts (5AC-SCNT embryos), compared with those of non-treated control (control-SCNT embryos) and SAH-treated fibroblasts (SAH-SCNT embryos). The developmental rates to blastocyst stage tended to be slightly increased in the SAH-SCNT embryos at each of the concentrations, and especially, the developmental rates in the SCNT embryos using 1.0 mM SAH-treated fibroblasts were significantly (p<0.05) higher than that of control SCNT embryos. The mean numbers of total and ICM cell in blastocysts were also significantly (p<0.05) decreased in the 5AC-SCNT embryos, compared with those of other SCNT blastocysts. Further, the level of telomerase activity was also significantly (p<0.05) decreased in the 5AC-SCNT embryos than those of control and SAH-SCNT embryos. Whereas, a significantly (p<0.05) up-regulated telomerase activity was observed in SAH-SCNT embryos, compare with that of control-SCNT embryos. In conclusion, SCNT embryos using hypomethylated donor cells with SAH, not 5AC, may improve the developmental potential and reprogramming efficiency.

Transformation of Populus nigra × P. maximowiczii Using Agrobacterium tumefaciens vectors (Agrobacterium tumefaciens vector를 이용(利用)한 양황철의 형질전환(形質轉換))

  • Son, Suk Gyu;Hyu, Jung Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.164-172
    • /
    • 1998
  • This study was conducted to find the optimum transformation condition using Agrobacterium harboring promoterless GUS gene. The optimal medium for shoot induction from leaves of Populus nigra${\times}$P. maximowiczii was MS medium supplemented with $0.1mg/{\ell}$ NAA, $0.5mg/{\ell}$ BAP(94% regeneration frequency and 11.5 average number of shoot) According to the test using pBI121, the concentration of antibiotics for selection marker gene was $100mg/{\ell}$ kanamycin or $60mg/{\ell}$ geneticin in the SIM(shoot inducing medium) 3. Two weeks later, callus was induced in the SIM 3 and this callus grew up to 0.5-1cm shoots after 6 weeks in the new SIM 3. And the treatment with methylation inhibitor(5-azacytidine) led to a dramatic increase in foreign gene expression rate from 5.7% to 26.7%. The vector systems showed. different transformation efficiencies based on the fluorometric and histochemical GUS assay. In this study the vector systems used for transformation seemed to affect transformation frequency, in which pEHA101 yielded more transformants(35.9%) than LBA4404/pBI121 did(5.7%). This result indicated that pEHA101 was effective to insert the promoterless foreign gene into a poplar genome.

  • PDF

Expression of Neurotensin/Neuromedin N Precursor in Murine Mast Cells

  • Ahn, Hyun-Jong;Cho, Jeong-Je
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.495-501
    • /
    • 2001
  • We have cloned the mouse neurotensin/neuromedin N (NT/N) gene from the murine mast cell line Cl.MC/C57.1 for the first time. The murine NT/N cDNA clone consisted of 765 nucleotides and coded for 169 peptide residues with an N-terminal signal peptide, and the C-terminal region contained of one copy of neurotensin (NT) and one copy of neuromedin N (NN). Total of four Lys-Arg dibasic motifs were present; one each at the middle of the open reading frame, at the N-terminal of NN, at the C-terminal of NT, and between NN and NT. Amino acid sequence analysis of the mouse NT/N revealed 90% homology to that of the rat NT/N gene. NT/N is expressed in murine mast cell lines (Cl.MC/C57.1 and P815), but not in murine bone marrow-derived mast cells (BMMCs), murine macrophage cell line (RAW 264.7), nor in murine T cell line (EL-4). NT/N mRNA in C1.MC/C57.1 is highly inducible by IgE cross-linking, phorbol myristate acetate, neurotensin, and substance P. Following the treatment of demethylating agent, 5-azacytidine (5-azaC), the NT/N gene was induced in BMMCs in response to IgE cross-linking. 5-azaC-treated BMMCs did not express the NT/N gene without additional stimuli. These findings suggested that the regulation of NT/N gene expression was dependent on the effects of not only gene methylation but also enhancer and/or repressor proteins acting on the NT/N promoter.

  • PDF

Expression and Clinical Significance of miRNA-34a in Colorectal Cancer

  • Ma, Zhi-Bin;Kong, Xiao-Lin;Cui, Gang;Ren, Cui-Cui;Zhang, Ying-Jie;Fan, Sheng-Jin;Li, Ying-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9265-9270
    • /
    • 2014
  • Background: The aim of this study was to investigate differences of miRNA-34a expression in benign and malignant colorectal lesions. Materials and Methods: Samples of cancer, paraneoplastic tissues and polyps were selected and total RNA was extracted by conventional methods for real-time PCR to detect the miRNA-34a expression. In addition, the LOVO colorectal cancer cell line was cultured, treated with the demethylating agent 5-azacytidine and screened for differentially expressed miRNA-34a. Results: After the drug treatment, the miRNA-34a expression of colorectal cancer cell line LOVO was increased and real-time PCR showed that levels of expression in both cell line and colorectal cancer tissues were low, as compared to paraneoplastic tissue (p<0.05). Polyps tissues had significantly higher expression than paraneoplastic and colorectal cancer samples (p<0.05). Conclusions: miRNA-34a-5p may play a role as a tumor suppressor gene in colorectal cancer, with involvement of DNA methylation.