• Title/Summary/Keyword: 5-압력공 프로브

Search Result 12, Processing Time 0.015 seconds

Study of the Flush Air Data Sensing System for Subsonic and Supersonic Flows (아음속 및 초음속 유동의 플러시 대기자료 측정장치 연구)

  • Lee, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.831-840
    • /
    • 2019
  • Flush Air Data Sensing system (FADS) estimates air data states using pressure data measured at the surface of flight vehicles. The FADS system does not require intrusive probes, so it is suitable for high performance aircrafts, stealth vehicles, and hypersonic flight vehicles. In this study, calibration procedures and solution algorithms of the FADS for a sphere-cone shape vehicle are presented for the prediction of air data from subsonic to supersonic flights. Five flush pressure ports are arranged on the surface of nose section in order to measure surface pressure data. The algorithm selects the concept of separation for the prediction of flow angles and the prediction of pressure related variables, and it uses the pressure model which combines the potential flow solution for a subsonic flow with the modified Newtonian flow theory for a hypersonic flow. The CFD code which solves Euler equations is developed and used for the construction of calibration pressure data in the Mach number range of 0.5~3.0. Tests are conducted with various flight conditions for flight Mach numbers in the range of 0.6~3.0 and flow angles in the range of -10°~+10°. Air data such as angle of attack, angle of sideslip, Mach number, and freestream static pressure are predicted and their accuracies are analyzed by comparing predicted data with reference data.

A Pressure Applied Low-Level Laser Probe to Enhance Laser Photon Density in Soft Tissue (생체조직내 레이저 광 밀도 향상을 위한 압력 인가형 저출력 레이저 프로브)

  • Yeo, Chang-Min;Park, Jung-Hwan;Son, Tae-Yoon;Lee, Yong-Heum;Jung, Byung-Jo
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.18-22
    • /
    • 2009
  • Laser has been widely used in various fields of medicine. Recently, noninvasive low-level laser therapeutic medical devices have been introduced in market. However, low-level laser cannot deliver enough photon density to expect positive therapeutic results in deep tissue layer due to the light scattering property in tissue. In order to overcome the limitation, this study was aimed to develop a negative pressure applied low-level laser probe to optimize laser transmission pattern and therefore, to improve photon density in soft tissue. In order to evaluate the possibility of clinical application of the developed laser probe, ex-vivo experiments were performed with porcine skin samples and laser transmissions were quantitatively measured as a function of tissue compression. The laser probe has an air suction hole to apply negative pressure to skin, a transparent plastic body to observe variations of tissue, and a small metallic optical fiber guide to support the optical fiber when negative pressure was applied. By applying negative pressure to the laser probe, the porcine skin under the metallic optical fiber guide is compressed down and, at the same time, low-level laser is emitted into the skin. Finally, the diffusion images of laser in the sample were acquired by a CCD camera and analyzed. Compared to the peak intensity without the compression, the peak intensity of laser increased about $2{\sim}2.5$ times and FWHM decreased about $1.67{\sim}2.85$ times. In addition, the laser peak intensity was positively and linearly increased as a function of compression. In conclusion, we verified that the developed low-level laser probe can control the photon density in tissue by applying compression, and therefore, its potential for clinical applications.