• Title/Summary/Keyword: 5 mega 화소

Search Result 2, Processing Time 0.015 seconds

The Acceptance Testing of 5 Mega Pixels Primary Electronic Display Devices and the Study of Quality Control Guideline Suitable for Domestic Circumstance (5 Mega 화소 진단용 전자표시장치 인수검사 및 국내 실정에 적합한 정도관리 가이드라인 연구)

  • Jung, Hai-Jo;Kim, Hee-Joung;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.98-106
    • /
    • 2007
  • In June 2005, Yonsei University Medical Center, Severance Hospital upgraded a full-PACS system by adding twenty (5 mega pixels) Totoku ME511L flat panel LCD display devices for diagnostic interpretation purposes. Here we report upon the quantitative (or visual) acceptance testing of the twenty Totoku ME511L display devices for reflection, luminance response, luminance spatial dependency, resolution, noise, veiling glare, and display chromaticity based on AAPM TG 18 report. The tools used in the tests included a telescopic photometer, which was used as a colorimeter, illuminance meter, light sources for reflection assessment, light-blocking devices, and digital TG18 test patterns. For selected 8 flat panel displays, mean diffuse reflection coefficient ($R_d$) was $0.019{\pm}0.02sr^{-1}$. In the luminance response test, luminance ratio (LR), maximum luminance difference ($L_{max}$), and deviation of contrast response were $550{\pm}100,\;2.0{\pm}1.9%\;and\;5.8{\pm}1.8%$, respectively. In the luminance uniformity test, maximum luminance deviation was $14.3{\pm}5.5%$ for the 10% luminance of the TG18-UNL10 test pattern. In the resolution test with luminance measurement method, percent luminance (${\Dalta}L$) at the center was $0.94{\pm}0.64%$. In all cases of noise testing, rectangular target In every square in the three quadrants was visible and all 15 targets except the smallest one in the every corner pattern and the center pattern. The glare ratio (GR) was $12,346{\pm}1,995$. The color uniformity, (u',v'), was $0.0025{\pm}0.0008$. Also, the research results of qualify control guideline of primary disply devices suitable for domestic circumstance are presented All test results are in-line with the criteria recommended by AAPM TG18 report and are thus fully acceptable for diagnostic image interpretation. As a result, the acceptance testing schedule described provides not only an acceptance standard but also guidelines for quality control, optimized viewing conditions, and a means for determining the upgrading time of LCD display devices for diagnostic interpretation.

  • PDF

Image Processing Algorithm for Crack Detection of Sewer with low resolution (저해상도 하수관거의 균열 탐지를 위한 영상처리 알고리즘)

  • Son, Byung Jik;Jeon, Joon Ryong;Heo, Gwang Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.590-599
    • /
    • 2017
  • In South Korea, sewage pipeline exploration devices have been developed using high resolution digital cameras of 2 mega-pixels or more. On the other hand, most devices are less than 300 kilo-pixels. Moreover, because 100 kilo-pixels devices are used widely, the environment for image processing is very poor. In this study, very low resolution ($240{\times}320$ = 76,800 pixels) images were adapted when it is difficult to detect cracks. Considering that the images of sewers in South Korea have very low resolution, this study selected low resolution images to be investigated. An automatic crack detection technique was studied using digital image processing technology for low resolution images of sewage pipelines. The authors developed a program to automatically detect cracks as 6 steps based on the MATLAB functions. In this study, the second step covers an algorithm developed to find the optimal threshold value, and the fifth step deals with an algorithm to determine cracks. In step 2, Otsu's threshold for images with a white caption was higher than that for an image without caption. Therefore, the optimal threshold was found by decreasing the Otsu threshold by 0.01 from the beginning. Step 5 presents an algorithm that detects cracks by judging that the length is 10 mm (40 pixels) or more and the width is 1 mm (4 pixels) or more. As a result, the crack detection performance was good despite the very low-resolution images.