• Title/Summary/Keyword: 5 V cathode

Search Result 303, Processing Time 0.031 seconds

Surface Treatment of LiFePo4 Cathode Material for Lithium Secondary Battery

  • Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.246-250
    • /
    • 2010
  • In this study, nano-crystallized $Al_2O_3$ was coated on the surface of $LiFePO_4$ powders via a novel dry coating method. The influence of coated $LiFePO_4$ upon electrochemical behavior was discussed. Surface morphology characterization was achieved by transmission electron microscopy (TEM), clearly showing nano-crystallized $Al_2O_3$ on $LiFePO_4$ surfaces. Furthermore, it revealed that the $Al_2O_3$-coated $LiFePO_4$ cathode exhibited a distinct surface morphology. It was also found that the $Al_2O_3$ coating reduces capacity fading especially at high charge/discharge rates. Results from the cyclic voltammogram measurements (2.5-4.2 V) showed a significant decrease in both interfacial resistance and cathode polarization. This behavior implies that $Al_2O_3$ can prevent structural change of $LiFePO_4$ or reaction with the electrolyte on cycling. In addition, the $Al_2O_3$ coated $LiFePO_4$ compound showed highly improved area-specific impedance (ASI), an important measure of battery performance. From the correlation between these characteristics of bare and coated $LiFePO_4$, the role of $Al_2O_3$ coating played on the electrochemical performance of $LiFePO_4$ was probed.

Synthesis of $LiCoO_2$ by solution route and its behaviour as a cathode material in lithium ion secondary battery (액상반응에 의해 합성한 $LiCoO_2$ 를 정극활물질로 이용한 Li ion 2차전지의 특성)

  • 김상필;조정수;박정후;심윤보;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.143-146
    • /
    • 1998
  • The $LiCoO_2$ powder was synthesized at >$700^{\circ}C$, >$850^{\circ}C$ by solution route. In this paper, we investigated X-ray diffraction, and charge-discharge performance for $LiCoO_2$/Li and $LiCoO_2$/MPCF cell. The $LiCoO_2$/Li ceSl exhibited a high avmge discharge potential of 38-3% and a good cycle life performance at 5(hnA/g during chargedischarge cycling between 43-3.0V. And, the $LiCoO_2$MPCF cell showed a high average discharge voltage of 3.6-3.W and a excellent cycle life prfomam during chargedischarge cycling b&wm 4 2-2.W. As a result, the $LiCoO_2$ powdm syd-eizd by solution route is a good cathode material for lithium ion secondary battery.

  • PDF

Optimization of Mg:Ag Cathodes and Effect of LiF Electron Injection Layer on the Characteristics of Top Emission Organic Light Emitting Diodes (전면 유기발광 다이오드 제작시 Mg:Ag 캐소드 최적화 및 LiF 전자주입층 유무에 따른 소자 특성에 관한 연구)

  • Song, Min Seok;Kwon, Sang Jik;Cho, Eou-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.71-74
    • /
    • 2022
  • For the process simplification in the fabrication of organic light emitting diode(OLED), top emission OLED (TEOLED) was fabricated without lithium fluoride(LiF) used as an electron injection layer (EIL). After co-deposition of Mg and Ag with a different process conditions, a cathode material adjacent to EIL was optimized when Mg and Ag have a ratio of 1:9 considering sheet resistance and transmittance. From the energy band diagram of TEOLED, band gap difference between Trisaluminium (Alq3) and Mg:Ag cathode show the difference of 0.4 eV according to the usage of LiF The fabricated TEOLED without LiF showed the improvement of 5.2 % and 2.7 % in the luminance and the current density comparing that with LiF. The results show there is no significant difference in OLED characteristics regardless of LIF layer in the TEOLED structures.

Fabrication of triode type Ti-silicided field emission tip array (3극 티타늄 실리사이드 전계방출 팁 어레이의 제작)

  • Ohm, Woo-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.3
    • /
    • pp.1-5
    • /
    • 2007
  • A new field emission tip array was realized by Ti silicidation of Ti coated Si tip, which has long term durability, chemical stability, and high emission current density. The fabricated Ti silicided FE tip array under high vacuum condition of about $10^{-8}Torr$ shows that the turn-on voltage is about 40V and the emission current is about $69{\mu}A$ when the bias of 150V is applied between anode and cathode of $100{\mu}m$ distance.

New Iron-Containing Electrode Materials for Lithium Secondary Batteries

  • Hong, Young-Sik;Ryu, Kwang-Sun;Chang, Soon-Ho
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.412-417
    • /
    • 2003
  • Using a galvanostatic charge/discharge cycler and cyclic voltammetry, we investigated for the first time the electrochemical properties of iron-containing minerals, such as chalcophanite, diadochite, schwertmannite, laihuite, and tinticite, as electrode materials for lithium secondary batteries. Lithium insertion into the mineral diadochite showed a first discharge capacity of about 126 mAh/g at an average voltage of 3.0 V vs. $Li/Li^+$, accompanied by a reversible capacity of 110 mAh/g at the 60th cycle. When the cutoff potential was down to 1.25 V, the iron was further reduced, giving rise to a new plateau at 1.3 V. Although the others showed discharge plateaus at low potentials of less than 1.6 V, these results give an important clue for the development of new electrode materials.

  • PDF

Electrical Properties of $CuO-V_2O_5-TeO_2$ Glass-Ceramics ($CuO-V_2O_5-TeO_2$계 결정화 유리의 전기적특성)

  • Lee, Chang-Hee;Son, Myung-Mo;Lee, Hun-Soo;Gu, Hal-Bon;Park, Hee-Chan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.842-844
    • /
    • 2004
  • Ternary tellurite glassy systems $(CuO-V_2O_5-TeO_2)$ have been synthesised using tellurium oxide as a network former and copper oxide as network modifier. The addition of a transition-matal oxide makes them electric or mixed electric-ionic conductors, which are of potential interest as cathode materials for solid-state batteries. This glass-ceramics crystallized from the $CuO-V_2O_5-TeO_2$ system are particularly interesting, because they exhibit high conductivity ( up to $6.03{\times}10^{-3}S/cm$) at room temperature. the glass samples were prepared by quenching the melt on the copper plate and the glass-ceramics were heat-treated at crystallizing temperature determined from differential thermal analysis (DTA). The electric D.C conductivity result have been analyzed in terms of a small polaron-hopping model.

  • PDF

Fabrication and Characterization of Enzyme Electrode for Lactate Fuel Cell (젖산 연료전지용 효소전극 제작 및 특성 분석)

  • Zhang, YanQing;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.373-378
    • /
    • 2021
  • The study aimed to develop a high-power enzymatic electrode for a wearable fuel cell that generates electricity utilizing lactate present in a sweat as fuel. Anode was fabricated by immobilizing lactate oxidase (LOx) on flexible carbon paper. As the lactate concentration in the electrolyte solution increased, the amount of current generated by catalysis of lactate oxidase increased. The immobilized LOx generated 1.5-times greater oxidation current density in the presence of gold nanoparticles than carbon paper only. Bilirubin oxidase (BOD)-immobilized cathode generated a larger amount of reduction current in the electrolyte saturated with oxygen than purged with nitrogen. A fuel cell composed of two electrodes was fabricated and cell voltage was measured under different discharge current. At the discharge current density of 66.7 ㎂/cm2, the cell voltage was 0.5±0.0 V leading to maximum cell power density of 33.8±2.5 ㎼/cm2.

Fabrication and Characteristics of Ceramic Fuel Cell with a Large Electrode Area (대면적 세라믹 연료전지용 단전지 제조 및 특성 연구)

  • Song, Rak-Hyun;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1544-1546
    • /
    • 1999
  • The fabrication process for ceramic fuel cell with a large electrode area was investigated. A cofired cell of two layer, electrolyte/anode, yielded a power of $200mW/cm^2$. Its performance loss was mainly due to iR drop in the anode side. The performance of the cofired of three layer. cathode/electrolyte/ anode, was much lower than that of two layer, which resulted from the large iR drop and overvoltage at the cathode side. Also a flat cell with a large area of $7.7{\times}10.8cm^2$ was fabricated successfully and tested using ceramic and metallic interconnectors. The large cell with metallic interconnectror showed a good performance of 0.6 V, 4.5 A.

  • PDF

Fabrication and Properties of Under Gate Field Emitter Array for Back Light Unit in LCD

  • Jung, Yong-Jun;Park, Jae-Hong;Jeong, Jin-Soo;Nam, Joong-Woo;Berdinsky, Alexander S.;Yoo, Ji-Beom;Park, Chong-Yun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1530-1533
    • /
    • 2005
  • We investigated under-gate type carbon nanotube field emitter arrays (FEAs) for back light unit (BLU) in liquid crystal display (LCD). Gate oxide was formed by wet etching of ITO coated glass substrate instead of depositing $SiO_2$ on the glass substrate. Wet etching is easer and simpler than depositing and etching of thick gate oxide to isolate the gate metal from cathode electrode in triode. Field emission characteristic s of triode structure were measured. The maximum current density of 92.5 ${\mu}A/cm^2$ was when the gate and anode voltage was 95 and 2500 V, respectively at the anode-cathode spacing of 1500 ${\mu}m$.

  • PDF

이온소스 Cathode 형태가 이온 빔에 미치는 영향

  • Min, Gwan-Sik;Lee, Seung-Su;Yun, Ju-Yeong;Jeong, Jin-Uk;O, Eun-Sun;Hwang, Yun-Seok;Kim, Jin-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.145.1-145.1
    • /
    • 2014
  • 변형된 end-Hall type의 이온 소스를 사용하여 이온 소스의 형태에 따라 달라지는 이온 빔의 변화를 측정하였다. 이온 소스 cathode의 wehnelt mask를 세 가지 종류로 제작하였으며, 생성된 이온 빔을 이용하여 Al이 sputter 방식으로 증착된 유리 기판을 etching 하였다. 실험 결과 wehnelt mask의 모양에 따라 focus, broad, strate의 형태로 이온 빔이 생성되는 것을 확인하였다. Al이 증착된 유리 기판의 제작을 위하여 Al target을 사용하여 RF power로 150 W, 2분간 sputtering을 하였고, 이온 소스와 기판사이의 거리를 1 cm씩 증가시켜가며 이온 빔을 2,500 V로 3분간 유리 기판을 etching한 후, 유리 기판이 etching된 모양을 통해 이온 빔의 형태를 분석하였다. 본 연구를 위하여 sputtering과 이온 빔 처리가 가능한 챔버를 제작하였으며, scroll pump와 turbo molecular pump를 사용하였다. Base pressure $1.5{\times}10^{-6}Torr$에서 실험이 진행되었고, 불활성 기체 Ar을 사용하였다. Ar 기체를 주입시 pressure는 $2.6{\times}10^{-3}Torr$였다.

  • PDF