• Title/Summary/Keyword: 5공 인젝터

Search Result 75, Processing Time 0.021 seconds

Numerical Studies of the Effect of Performance and Combustion Characteristics on Injector Arrangement and Impinging Angles in Sub-scale Liquid Rocket Engine (축소형 액체 로켓엔진에서 인젝터 배열과 충돌각에 따른 성능 및 연소특성의 수치적 해석)

  • 문윤완;김영목
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.5-5
    • /
    • 2000
  • 이 연구의 목적은 한국항공우주연구소가 개발 중인 액체추진제 로켓엔진의 축소형 엔진에 대하여 인젝터 배열의 변화가 성능 및 연소특성에 미치는 영향을 분석하는데 있다. 인젝터의 배열방식에 따라 방사형(radial) 및 직교형(H-type) 인젝터를 연구대상으로 하였으며 충돌각의 변화에 2차원 및 3차원 해석을 수행하였다. 로켓엔진에는 스월러 인젝터를 고려하지 않았기 때문에 인젝터의 배열 및 충돌 각은 엔진성능뿐만 아니라 연소특성에도 중요하게 영향을 미치는 인자가 된다.(중략)

  • PDF

2유체 전단 동축형 인젝터의 미립화 및 분무특성에 관한 실험적 연구

  • Jeon, Chang-Hwan;Han, Jae-Seob;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.1-1
    • /
    • 1999
  • 2유체 동축인젝터(coaxial twin fluid injector)는 액체산소와 액체수소를 추진제로 사용하는 SSME(Space Shuttle Main Engine)이나 유럽의 Arian 5 Vulcain 엔진과 같은 저온추진제 엔진에 널리 사용되고 있다. 추진제를 미립화 시키는 장치로서 사용하는 다른 여러 형태의 인젝터에 비교할 때 저속의 액체산화제 주위에 고속의 가스연료가 분사됨으로서 발생되는 전단력에 의해 추진제가 미립화되는 특징을 가지며, 이러한 메카니즘은 매우 복잡하여 아직까지 정확히 규명되지 못하고 있는 실정이다.

  • PDF

Study of Flow Characteristics of Gel Propellant through Various Injector Geometries (인젝터 형상 변화에 따른 Gel 추진제의 유동 특성 연구)

  • Oh, Jeong-Su;Jeon, Doo-Sung;Choi, Sang-Tae;Kim, Deok-Yoon;Choi, Yang-Ho;Lee, Jeong-Hyuk;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.300-303
    • /
    • 2010
  • The present study investigates the flow characteristics of simulant gel propellant(carbopol 0.5%wt) in a variety of injectors. Rheological data for gel propellant has been measured and injector flow characteristics for plain-orifice, chamfered-orifice and venturi type injector have been numerically analyzed. The apparent viscosity of plain-orifice and chamfered-orifice have tendency to increase along axial direction, whereas for venturi type injector, low viscosity has been achieved in the injector flow. This phenomenon was clearly pronounced as Reynolds number is increased.

  • PDF

Study on Spray Visualization and Atomization Characteristics of Air-assist Type Injector for Scramjet Engine (스크램제트 엔진용 공기 보조형 인젝터의 분무 가시화 및 미립화 특성에 관한 연구)

  • Lee, Jinhee;Lee, Sanghoon;Lee, Kyungjae;Kim, Jaiho;Yang, Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.88-96
    • /
    • 2017
  • As a part of the development procedures of scramjet engine with a regenerative cooling system, this experiment was performed using air-assist type injectors for scramjet engine. Two types of injectors were used in this experiment with the 90 and 60 degrees of the injection angle to the main flow. Mie-scattering was used for spray visualization and PDPA was used for the measurement of the atomization characteristics. It was found that increasing the pressure of supplied gas and the distance from nozzle tip led to the enhancement atomization characteristics and the injector with 60 degrees injection angle has better atomization characteristics than 90 degrees injector.

Spatial Distribution Characteristics of Small LRE-injector's Spray-droplet According to the Variation of Fuel-injection Pressure (소형 액체로켓엔진 인젝터 분무의 연료분사압력 변이에 따른 액적의 공간분포 특성)

  • Jung, Hun;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • Dual-mode Phase Doppler Anemometry (DPDA) was used to scrutinize the spatial distribution characteristics of spray emanating from a small Liquid-Rocket Engine (LRE) injector. Droplet size and velocity were measured according to the variation of injection pressure along the plane normal to the spray stream and then the spray characteristic parameters such as Arithmetic Mean Diameter (AMD), Sauter Mean Diameter (SMD), number density, span of drop size distribution, and volume flux were deduced for an investigation of spray breakup characteristics. As the injection pressure increases, the number density, span, and volume flux of spray droplets become higher, whereas the AMD gets smaller.

Analysis on Combustion Characteristics of CRDi Single-cylinder Diesel Engine with Direct Needle-driven Piezo Injector (직접구동 피에조 인젝터의 CRDi 단기통 디젤엔진 연소 특성 분석)

  • Chung, Myungchul;Sung, Gisu;Kim, Sangmyung;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.108-115
    • /
    • 2014
  • In this study, experimental approaching method was applied under and single-cylinder engine to research the performance of direct needle-driven piezo injector (DPI) for CR direct-injection. As key-point factor of this DPI that relies on direct-acting operating of injector needle, unlike conventional hydraulic-servo, its nozzle needle can be directly driven by piezo actuator. Thus, effect of direct-acting injection of DPI on diesel combustion and emission characteristics was investigated under common-rail single-cylinder direct-injection engine, equipped with three different driving mechanism, including indirect-acting solenoid, piezo and DPI system. As main results, it found that a direct-acting piezo injector has higher of IMEP. And it has higher heat release rate during premixed combustion and mixing controlled combustion phase due to its higher heat release, even though nitrogen oxide (NOx) formations were increased slightly.

Study for combustion characteristic according to the O/F ratio of low thrust rocket engine using green propellant (친환경 추진제를 사용하는 저추력 엑체로켓엔진의 혼합비에 따른 연소 특성)

  • Jeon, Jun-Su;Kim, Young-Mun;Hwang, O-Sik;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.134-137
    • /
    • 2009
  • Combustion tests of a low thrust rocket engine was performed to get combustion characteristics, which used a high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel. The engine consisted of multi injector(six coaxial swirl injectors), chamber, nozzle and catalyst ignition system. The test was carried out by changing O/F ratio from 3.8 to 11.0. The experimental results showed that combustion efficiency was highest at O/F ratio from 5 to 6 and pressure fluctuations of all the range were lower than 5%.

  • PDF

Combustion Performance of a Pintle Injector Rocket Engine with Canted Slit Shape by Characteristic Length and Total Momentum Ratio (Canted Slit 형상의 핀틀 인젝터 로켓엔진의 특성길이와 운동량비에 따른 연소성능)

  • Yu, Isang;Kim, Sunhoon;Ko, Youngsung;Kim, Sunjin;Lee, Janghwan;Kim, Hyungmo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • In this study, a pintle injector rocket engine which uses kerosene and liquid oxygen as propellants was manufactured by collecting basic design data and establishing a design procedure. Combustion performance of the liquid rocket engine was investigated by characteristic velocity efficiency with characteristic length of the combustion chamber and total momentum ratio. As a result of hot fire tests, it showed that the engine had shorter characteristic length comparing to those of other type injectors, which was known as recommended value with the propellant combination. Also, the characteristic velocity efficiency was greatly affected by total momentum ratio and almost constant within 1.0~1.5.

Spray Characteristics of Jet According to Position of Injector Hole in Crossflow (횡단유동내 인젝터 홀의 위치에 따른 제트의 분무 특성)

  • Choi, Myeung Hwan;Shin, Dong Soo;Radhakrishnan, Kanmaniraja;Son, Min;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.88-96
    • /
    • 2018
  • Effects of injector position and momentum flux ratio on a vertical jet in a cross-flow field are qualitatively studied and displayed using air and water. The position of the injector hole and the momentum flux ratio is changed and image visualization is performed using a shadowgraph technique and a high-speed camera. The visualized images are compared to find differences in spraying using density gradient magnitude image. It is observed that, as the x/d of the apparatus increases, the jet break-up height decreases. When x/d is 0, the spray reaches the bottom and ceiling at any momentum flux ratio.

Study on Breakup Characteristics of Gel Propellant Using Pressure Swirl Injector (압력선회형 인젝터를 이용한 젤 추진제의 분열특성 연구)

  • Cho, Janghee;Lee, Donghee;Kim, Sulhee;Lee, Donggeun;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • In this study, cold-flow test of simulant gel is conducted using a pressure swirl injector to identify spray characteristics according to gellant weight percent. Experiment results show the aircore is developed locally at the nozzle and expanded to the entire swirl chamber as the supply pressure increases. The aircore formation of simulant gel showed no significant difference compared to Newtonian fluid. The spray pattern was classified into four distinct shapes where relationship between the breakup regimes and dimensionless numbers were investigated. In the future, additional study is necessary to understand the aircore formation mechanism, stability and spray characteristics at different configuration of the swirl chamber shape.