• Title/Summary/Keyword: 4way 히트펌프

Search Result 6, Processing Time 0.031 seconds

Performance Simulation of Geothermal Heat Pump (GHP) System with Different Control Schemes (제어 방식에 따른 지열 히트펌프 시스템의 성능 시뮬레이션)

  • Lee, Doo-Young;Choi, Jae-Ho;Min, Kyong-Chon;Sohn, Byonghu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Geothermal heat pump (GHP) systems have been proved to be one of the most efficient systems for heating and cooling in buildings. However, an optimal energy performance depends on a good control of the system components, including heat pumps and circulation pumps, which affect to the total energy consumption of system. This paper presents the simulation results of the heat pump performance for two different control schemes, i.e. constant setting temperature (Control-A) and variable setting temperatures (Control-B) in buffer tank. A dynamic simulation tool, TRNSYS 17, was used to model the entire system and to assess the performance of the system. Simulation results show that the Control-B, which controls the temperature in buffer tank with outdoor air temperature, is a effective way to reduce the energy consumptions in heat pump (7.7%) and circulation pump (7.5%).

A Study on the Evaluation of Air Change Efficiency of Multi-Air-Conditioner with Ventilation System for Heating Season (환기시스템이 적용된 히트펌프의 난방시 급기효율 평가에 관한 연구)

  • Kwon Yong-Il;Han Hwataik;Kim Kyung-Hwan;Chung Baik-Young;Lee Gam-Gue
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.56-61
    • /
    • 2005
  • Indoor air quality becomes of a concern recently in view of human health. This study investigates the air diffusion performance and the air change efficiency of a classroom, when outdoor air is introduced in addition to the heating/cooling operation of a ceiling-mounted heat pump. A CFD analysis has been performed to investigate the effect of the discharge angle of the air jets from the heat pump for both parallel and series types of outdoor air system. It is observed that the series type creates more uniform indoor environment compared to the parallel type in general. It can be concluded the discharge angle should not be larger than 40o for the parallel type, in order not to generate thermal stratification in the room.

A Study for Automatic Temperature Control of the Heating-Cooling System with Heat Pump (히트펌프 냉·난방 시스템의 온도 자동제어에 관한 연구)

  • Koo, Chang-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.4
    • /
    • pp.143-149
    • /
    • 2011
  • The experiment has been investigated the room temperature change under adjusting 4-way valve which was installed for cooling and heating switch. Beside, the temperature of heat pump was controlled automatically for autonomously adjusting temperature and maintaining a constant room temperature. As results, Inlet & outlet temperature differences of compressor are $95^{\circ}C$ in cooling condition and $57^{\circ}C$ in heating condition. Therefore, Compression efficiency of cooling effect is higher than heating effect. In addition, Heat exchange effect of Cooling system condition is higher than heating system. This results can be used for studying about automatic temperature control of cooling and heating system with heat pump and 4way valve.

IEA ECBCS Annex 54 Economic Assessment Study of a Fuel Cell Integrated Ground Source Heat Pump Microgeneration System (연료전지 지열히트펌프 마이크로제너레이션 IEA ECBCS Annex 54 경제성 평가 연구)

  • Na, Sun-Ik;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.199-205
    • /
    • 2014
  • The integration of FC (Fuel Cell) and GSHP (Ground Source Heat Pump) hybrid system could produce a synergistic advantage in thermal and electric way. This study intends to analyse the economical aspect of a FC integrated GSHP hybrid system compared to the conventional system which is consisted with a boiler and a chiller. Based on the hourly simulation, the study indicated that GSHP system and FC+GSHP hybrid system could reduce the energy consumption on a building. The method of the economic assessment has been based on IEA ECBCS Annex 54 Subtask C SPB(Simple Payback) method. The SPB was calculated using the economic balanced year of the alternative system over the conventional (reference) system. The SPB of the alternative systems (GSHP and FC+GSHP) with 50% initial incentive was 4.06 and 26.73 year respectively while the SPB without initial incentive of systems was 10.71 and 57.76 year.

Two Way Set Temperature Control Impact Study on Ground Coupled Heat Pump System Energy Saving (양방향 설정온도 제어에 따른 지중연계 히트펌프 시스템의 에너지 절감량 평가 연구)

  • Kang, Eun-Chul;Lee, Euy-Joon;Min, Kyong-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • Government has recently restricted heating and cooling set temperatures for the commercial and public buildings due to increasing national energy consumption. The goal of this paper is to visualize a future two way indoor set temperature control impact on building energy consumption by using TRNSYS simulation modeling. The building was modelled based on the twin test cell with the same dimension. Air source ground coupled heat pump performance data has been used for modeling by TRNSYS 17. Daejeon weather data has been used from Korea Solar Energy Society. The heating set temperature in the reference room is $24^{\circ}C$ as well as the target room set temperature are $23^{\circ}C$, $22^{\circ}C$, $21^{\circ}C$ and $20^{\circ}C$. The cooling set temperature of the reference room is also $24^{\circ}C$ as well as the target room set temperature of $25^{\circ}C$, $26^{\circ}C$, $27^{\circ}C$ and $28^{\circ}C$. For the air source heat pump system, heating season energy consumption is $35.52kWh/m^2y$ in the reference room. But the heating energy consumption in the target room is reduced to 7.5% whenever the set temperature decreased every $1^{\circ}C$. The cooling energy consumption in the reference room is $4.57kWh/m^2y$. On the other hand, the energy consumption in the target room is reduced to 22% whenever the set temperature increased every $1^{\circ}C$ by two way controller. For the geothermal heat pump system, heating energy consumption in the reference room is reduced to 20.7%. The target room heating energy consumption is reduced to 32.6% when the set temperature is $22^{\circ}C$. The energy consumption in the target room is reduced to 59.5% when the set temperature is $26^{\circ}C$.

An Experimental Study on Evaporation/Condensation Heat Transfer with Flow Direction in Brazed Plate Heat Exchanger using Refrigerant 410A (R410A를 이용한 브레이징 타입 판형열교환기에서 물 측 유동방향에 따른 응축/증발 성능 평가)

  • Lee, Sung-Woo;Jeong, Young-Man;Lee, Jae-Keun;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1096-1101
    • /
    • 2009
  • The plate heat exchanger(PHE) in heat pump has two flow streams of the refrigerant and water. The flow direction of the refrigerant, unlike that of water, can be changed by a 4-way valve depending on operating condition. Therefore the flow arrangement is a parallel flow for heating and a counter flow for cooling, respectively. In this study, the effects of the flow direction of the water on the heat transfer rate are investigated experimentally. The experiments are carried out for brazed plate heat exchangers under a parallel and counter flow conditions in evaporation and condensation. The experimental parameters in this study include the mass flux of the refrigerant 410A from 3 to $14\;kg/m^2s$ and the flow patterns for the pressure of PHE fixed at 0.97 and 2.46 MPa. The results show that both the heat transfer rate and frictional pressure drop across the PHE increase with the mass flux. The heat transfer rate of the refrigerant 410A for evaporation show great sensitivity to flow direction of the water. The heat transfer rate for evaporation with a counter flow are 5-30% higher than that with a parallel flow.

  • PDF