• Title/Summary/Keyword: 4f moment

Search Result 88, Processing Time 0.025 seconds

Magnetic Susceptibility of the Single Crystal MnF2(1.5% EuF3) (단결정 MnF2(1.5% EuF3)의 자기 감수율)

  • Lee, Jun-Young;Nahm, Kyun;Kim, Chul-Koo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.261-263
    • /
    • 2006
  • In order to investigate the magnetic properties of Eu ions in the single crystal $MnF_2$, the temperature dependent magnetic susceptibilities of the antiferromagnetic $MnF_2$ and the single crystal $MnF_2$(1.5% $EuF_3$) with the rutile structures were measured in the temperature range from 4K to 300K. The detailed analysis of the measured susceptibilities showed that the magnetic susceptibility by the doping of the small amount $EuF_3$ in the antiferromagnetic single crystal $MnF_2$ follows the antiferromagnetic Curie-Weiss law with the negative paramagnetic Curie temperature similarly as in $MnF_2$. It was also found that Eu ion has +3 valence. This solves the long standing discrepancy on this problem.

Ductility and ductility reduction factor for MDOF systems

  • Reyes-Salazar, Alfredo
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.369-385
    • /
    • 2002
  • Ductility capacity is comprehensively studied for steel moment-resisting frames. Local, story and global ductility are being considered. An appropriate measure of global ductility is suggested. A time domain nonlinear seismic response algorithm is used to evaluate several definitions of ductility. It is observed that for one-story structures, resembling a single degree of freedom (SDOF) system, all definitions of global ductility seem to give reasonable values. However, for complex structures it may give unreasonable values. It indicates that using SDOF systems to estimate the ductility capacity may be a very crude approximation. For multi degree of freedom (MDOF) systems some definitions may not be appropriate, even though they are used in the profession. Results also indicate that the structural global ductility of 4, commonly used for moment-resisting steel frames, cannot be justified based on this study. The ductility of MDOF structural systems and the corresponding equivalent SDOF systems is studied. The global ductility values are very different for the two representations. The ductility reduction factor $F_{\mu}$ is also estimated. For a given frame, the values of the $F_{\mu}$ parameter significantly vary from one earthquake to another, even though the maximum deformation in terms of the interstory displacement is roughly the same for all earthquakes. This is because the $F_{\mu}$ values depend on the amount of dissipated energy, which in turn depends on the plastic mechanism, formed in the frames as well as on the loading, unloading and reloading process at plastic hinges. Based on the results of this study, the Newmark and Hall procedure to relate the ductility reduction factor and the ductility parameter cannot be justified. The reason for this is that SDOF systems were used to model real frames in these studies. Higher mode effects were neglected and energy dissipation was not explicitly considered. In addition, it is not possible to observe the formation of a collapse mechanism in the equivalent SDOF systems. Therefore, the ductility parameter and the force reduction factor should be estimated by using the MDOF representation.

4f spin dynamics in TbNi$_2$B$_2$C by $^{11}$B NMR

  • Lee, K.H.;Seo, S.W.;Kim, D.H.;Khang, K.H.;Seo, H.S.;Hwang, C.S.;Hong, K.S.;Cho, B.K.;Lee, W.C.;Lee, Moo-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.61-64
    • /
    • 2000
  • $^{11}$B NMR measurements have been performed to investigate local electronic structure and 4f spin dynamics for TbNi$_2$B$_2$C single crystal. $^{11}$B NMR spectra show three resonance peaks due to the quadrupolar interaction. Shift and linewidth are huge and strongly temperature-dependent. In addition, both are proportional to magnetic susceptibility, indicating that the hyperfine field at the boron site originates from the 4f spins of Tb. $^{11}$B NMR shift and relaxation rates show high anisotropy for field parallel and perpendicular to the c-axis. Anisotropy of the shift and the relaxation rates suggests that the hyperfine field perpendicular to the c-axis is larger.

  • PDF

Comparative Study on the Application of Direct Analysis Method to Large Container Carriers (대형 컨테이너선의 직접해석법에 관한 비교 연구)

  • Ryu Hong-Ryeul;Lee Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.484-493
    • /
    • 2006
  • Recently, direct load analysis using ship motion program is required to confirm structural safety for the Post-Panamax class large container carrier. However, there is no exact comparative study data for structural response between 20 and 30 wave load. So, in this paper, to compare the hull girder stress response between 20 versus 3D wave load calculation method, direct load analysis and global F.E analysis have been performed for three kinds of large container vessels using each 20 and 30 wave load calculation program. The results of 2D wave load RAO(Response Amplitude Operator) of each dominant load parameter(vertical, torsional and horizontal moment) are generally bigger than that of 30 results, especially in vertical wave bending moment. And the results of structural analysis based on the equivalent design wave method shows that there is a big difference in view of stress, but the stress distribution is very similar for each wave load case.

Numerical study on the rotation capacity of CFRP strengthened cold formed steel beams

  • Serror, Mohammed H.;Soliman, Essam G.;Hassan, Ahmed F.
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.385-397
    • /
    • 2017
  • Currently, CFRP (Carbon Fiber Reinforced Polymer) plate bonding is used quite extensively as a strengthening method. In this technique, a composite CFRP plate or sheet of relatively small thickness is bonded with an adhesion material to steel or concrete structure in order to improve its structural behavior and strength. The sheets or plates do not require much space and give a composite action between the adherents. In this study, the rotation capacity of CFRP-strengthened cold-formed steel (CFS) beams has been evaluated through numerical investigation. Studies on different structural levels have been performed. At the beam level, C-section has been adopted with different values of profile thickness, web height, and flange width. At the connection level, a web bolted moment resistant type of connection using through plate has been adopted. In web-bolted connections without CFRP strengthening, premature web buckling results in early loss of strength. Hence, CFRP sheets and plates with different mechanical properties and geometric configurations have been examined to delay web and flange buckling and to produce relatively high moment strength and rotation capacity. The numerical results reveal that CFRP strengthening may increase strength, initial stiffness, and rotation capacity when compared with the case without strengthening.

An Experimental Study on the Evaluaiton of Elastic-Plastic Fracture Toughness under Mixed Mode I-II-III Loading Using the Optical PSD (PSD를 이용한 혼합모드 하중하에서 탄소성 파괴인성평가에 관한 실험적인 연구)

  • Kim, Hei-Song;Lee, Choon-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1263-1274
    • /
    • 1996
  • In this paper, as elastic-plastic fracture toughness test under mixed mode loading was proposed using a single edge-cracked specimen subjected to bending moment(M), shearing force(F), and twisting moment(T). The J-integral of a crack in the specimen is expressed in the form J=$J_I$+ $J_II$$J_III$, where $J_I$, $J_II$ and $J_III$ are the components of mode I, mode II and mode III deformation, respectively. $J_I$, $J_II$ and $J_III$ can be estimated from M-$\theta$ ($\theta$;crack opening angle), F-U(U; crack shear displacement) and T-$\alpha$ ($\alpha$;crack twisting angle). In order to obtain the the M<-TEX>$\theta$, F-U and T-$\alpha$ diagram inreal time, a new deformaiton gage for mixed mode loading was proposed using the optical position sensing device(PSD). The elastic-plastic fracture toughness test was carried out with an aluminum alloy. The loading apparatus was designed and manufactured for this experiment. For the loading condition of the crack initatio in the mixed mode, the MMT -3(mode I+ mode II+ mode III) has the lowest values out of the all specimens. This implies that MMT-3 is possible of the crackinitation at lower load, if the specimen acts on together with the torque under the same loading condition. An elastic-plastic fracture toughness test using the PSD brings a successful experimentation in measuring the crack deformation(mode I+ mode II+ mode III).

AN EXPERIMENTAL STUDY ON THE STRESS DISTRIBUTION IN THE PERIODONTAL LIGAMENT (치주인대의 응력 분포 양상에 관한 실험 연구)

  • Choy, Kwang-Chul;Kim, Kyung-Ho;Park, Young-Chel;Han, Jung-Yun
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.15-24
    • /
    • 2001
  • In order to achieve a desirable tooth movement, it is of great importance to control the M/F ratio and to know the location of the center of resistance. The purpose of this study was to locate the center of resistance and the axis of rotation, and to estimate the stress distribution in the periodontal ligament with experimental model. After preparing a model of an upper canine with a simulated periodontal ligament and alveolar bone, the force and moment were applied. The tooth movement was traced using measuring device with LVDTs(Linear variable differential transformers) that can measure three dimensional tooth movement in real time. The results were as follows. 1. The location of center of resistance by transverse force was $29\%$ of root length measured from alveolar crest to apex regardless of force magnitude. The position of the center of resistance is more coronal than that of two-dimensional model($42\%$). 2. The center of resistance and the axis of rotation coincide when couple moment was applied. 3. As the magnitude of moment increases, tooth tends to extrude irrespective of the direction of the moment. 4. The relationship between location of force and axis of rotation (a x b = $49.6\;mm^2$) was obtained. A tooth movement can be predicted through this formula. 5. The centers of rotation by transverse force were plotted linearly.

  • PDF

Design of Dual frequency Inverted-F Antenna with Spur Line (스퍼 라인을 이용한 이중 주파수 역 F형 안테나의 설계)

  • 허문만;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.702-708
    • /
    • 2002
  • In this paper, we design the dual frequency antenna that could easily determine two operation frequencies by its inverted-F antenna structure and spur line length. The spur line is applied to the inverted-F antenna, in order to dual operation characteristics in PCS and cellular frequencies. It has designed by using the IE3D commercial software based on the moment method. As the designed antenna is fabricated and measured, you can see the results such as the return loss, the input impedance, the radiation patterns, and the gain. The size of this antenna is 40 mm$\times$14 mm$\times$9.4 mm, it is compact enough to use as an intenna. Also, This antenna can be used with cellular and PCS phone of domestic market.

Metamagnetism in $Fe_3$Al Alloy

  • Rhee, Joo-Yull;Lee, Young-Pak
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.60-62
    • /
    • 2003
  • In this study we report the results of ab initio first-principles calculations to investigate the possibility of metamagnetic behavior in Fe$_3$Al alloy. We used the WIEN2k package of full-potential linearized-augmented- plane-wave method within the local-spin-density approximation to the density-functional theory. The exchange-correlation functional is the generalized-gradient approximation of Perdew-Burke-Ernzerhof. The theoretical lattice constant, which is about 0.5% smaller than the experimental one, is obtained by minimizing the total energy. If the volume decreases about 9 % from the equilibrium, the total magnetic moment decreases abruptly from 4.6 $\mu_{B}$/f.u. to 4.0 $\mu_{B}$/f.u. Since this change is considerably large (∼14%), it is possible to measure by a simple high-pressure experiment at about 180 kbar.

Crystallographic and Magnetic Properties of $NdFe_{10.7}Ti_{1.3}$ ($NdFe_{10.7}Ti_{1.3}$의 결정학적 및 자기적 성질 연구)

  • 이승화;이용종;안성용;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.361-366
    • /
    • 1996
  • $NdFe_{10.7}Ti_{1.3}$ has been studied with X-ray diffraction, Mossbauer spectroscopy and vibrating sample magnet-ometer(VSM). The alloys were prepared by arc-melting under an argon atmosphere. The $NdFe_{10.7}Ti_{1.3}$ contains some $\alpha-Fe$, from X-ray and Mossbauer measurements. The $NdFe_{10.7}Ti_{1.3}$ has the $ThMn_{12}$-type tetragonal struc-ture with $a_{0}=8.607{\AA}\;and\;c_{0}=4.790{\AA}$. The Curie temperature ($T_c$) of the $NdFe_{10.7}Ti_{1.3}$ is 590 K from $M\"{o}ssbauer$ spectroscopy performed at various temperatures ranging from 13 to 800 K. Each spectrum below $T_c$ was fitted with six subspectra of Fe sites in the structure$(8i_{1},\;8i_{2},\;8j_{2},\;8j_{1},\;8f\;and\;{\alpha}-Fe)$. The area fractions of the subspectra at room temperature are 13.8%, 15.4%, 17%, 16.4%, 34.1% and 3.3%, respectively. Magenetic hyperfine fields for the Fe sites decrease in the order, $H_{hf}(8i)>H_{hf}(8j)>H_{hf}(8f)$. The abrupt changes in the magnetic hyperfine field, isomer shift and magnetic moment observed at about 180 K in $NdFe_{10.7}Ti_{1.3}$ are attributed to spin reorientation.

  • PDF