• 제목/요약/키워드: 4HNE

검색결과 45건 처리시간 0.029초

원지(遠志)가 뇌혈류 저하에 의한 흰쥐 뇌조직의 산화적 손상과 해마신경세포 자연사에 미치는 영향 (Effects of Polygalae Radix on Brain Tissue Oxidative Damage and Neuronal Apoptosis in Hippocampus Induced by Cerebral Hypoperfusion in Rats)

  • 구용모;곽희준;권만재;송민철;이지승;신정원;손낙원
    • 대한본초학회지
    • /
    • 제31권1호
    • /
    • pp.7-15
    • /
    • 2016
  • Objectives : Polygalae Radix (POL) has an ameliorating effect on learning and memory impairment caused by cerebral hypoperfusion. In regard to POL's action mechanism, this study was carried out to investigate the effects of POL on oxidative damage and neuronal apoptosis induced by cerebral hypoperfusion in rats.Methods : The cerebral hypoperfusion was induced by permanent bilateral common carotid artery occlusion (pBCAO) in Sprague-Dawley rats. POL was administered orally once a day (130 mg/kg of water-extract) for 28 days starting at 4 weeks after the pBCAO. Superoxide dismutase (SOD) activities and malondialdehyde (MDA) levels in the brain tissue were measured using ELISA method. Expressions of 4-hydroxynonenal (4HNE) and 8-hydroxy-2'- deoxyguanosine (8-OHdG) were observed using immunohistochemistry. In addition, neuronal apoptosis was evaluated with Cresyl violet staining, TUNEL labeling, and immunohistochemistry against Bax and caspase-3.Results : POL treatment significantly increased SOD activities and significantly reduced MDA levels in the cerebral cortex. The up-regulations of 4HNE and 8-OHdG expression caused by pBCAO in the CA1 of hippocampus were significantly attenuated by POL treatment. POL treatment also restored the reduction of CA1 thickness and CA1 neurons caused by pBCAO and significantly attenuated the apoptotic markers including TUNEL-positive cells, Bax, and caspase-3 expression in the CA1 of hippocampus.Conclusions : The results show that POL attenuated the oxidative damage in brain tissue and neuronal apoptosis in the hippocampus caused by the cerebral hypoperfusion. It suggests that POL can be a beneficial medicinal herb to treat the brain diseases related to cerebral hypoperfusion.

사리장의 항산화 효과 (In vitro Antioxidant Effects of Sarijang)

  • 서보영;최미주;최은아;박은주
    • 한국식품영양과학회지
    • /
    • 제43권4호
    • /
    • pp.618-623
    • /
    • 2014
  • 본 연구에서는 서목태를 기본으로 하여 제조된 전통 발효물인 사리장의 항산화 활성 분석 및 comet assay를 이용한 DNA 손상 억제 효과를 분석하고자 하였다. 사리장의 총 폴리페놀 함량은 $1.04{\pm}0.01$ mg GAE/mL로 나타났다. 항산화 활성을 분석한 DPPH 라디칼 소거능 및 TRAP는 농도 의존적으로 활성이 증가하였으며, 각각의 $IC_{50}$은 11.2 mg/mL와 1.2 mM로 나타났다. ORAC 활성 역시 농도 의존적 증가 활성을 나타내었다. 세포의 ROS 소거능(CAC)은 사리장 처리구의 모든 농도(10~100 ${\mu}g/mL$)에서 NC와 동일한 수준의 ROS 억제 활성을 나타내었다. Comet assay를 이용한 DNA 손상 보호 효과는 $H_2O_2$, Fe-NTA 그리고 HNE에 의한 산화적 스트레스에 의한 DNA 손상을 농도 의존적으로 보호하는 것으로 나타났으며, $IC_{50}$$H_2O_2$ 처리군이 13.4 ${\mu}g/mL$, Fe-NTA 처리군이 32.2 ${\mu}g/mL$, HNE 처리군이 59.9 ${\mu}g/mL$로 나타났다. 이상의 결과들은 사리장이 항산화 관련 생리활성을 가지는 것으로 판단되며, 향후 사리장에 포함된 생리활성 성분의 탐색과 in vivo 모델을 통한 생리활성 연구가 이루어져야 할 것으로 보인다.

Met inactivation by S-allylcysteine suppresses the migration and invasion of nasopharyngeal cancer cells induced by hepatocyte growth factor

  • Cho, Oyeon;Hwang, Hye-Sook;Lee, Bok-Soon;Oh, Young-Taek;Kim, Chul-Ho;Chun, Mison
    • Radiation Oncology Journal
    • /
    • 제33권4호
    • /
    • pp.328-336
    • /
    • 2015
  • Purpose: Past studies have reported that S-allylcysteine (SAC) inhibits the migration and invasion of cancer cells through the restoration of E-cadherin, the reduction of matrix metalloproteinase (MMP) and Slug protein expression, and inhibition of the production of reactive oxygen species (ROS). Furthermore, evidence is emerging that shows that ROS induced by radiation could increase Met activation. Following on these reports of SAC and Met, we investigated whether SAC could suppress Met activation. Materials and Methods: Wound healing, invasion, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT), soft agar colony forming, western blotting, and gelatin zymography assays were performed in the human nasopharyngeal cancer cell lines HNE1 and HONE1 treated with SAC (0, 10, 20, or 40 mM) and hepatocyte growth factor (HGF). Results: This study showed that SAC could suppress the migration and invasion of HNE1 and HONE1 cell lines by inhibiting p-Met. An increase of migration and invasion induced by HGF and its decrease in a dose dependent manner by SAC in wound healing and invasion assays was observed. The reduction of p-Met by SAC was positively correlated with p-focal adhesion kinase (p-FAK) and p-extracellular related kinase (p-ERK in both cell lines). SAC reduced Slug, MMP2, and MMP9 involved in migration and invasion with the inhibition of Met-FAK signaling. Conclusion: These results suggest that SAC inhibited not only Met activation but also the downstream FAK, Slug, and MMP expression. Finally, SAC may be a potent anticancer compound for nasopharyngeal cancer treated with radiotherapy.

Cysteine improves boar sperm quality via glutathione biosynthesis during the liquid storage

  • Zhu, Zhendong;Zeng, Yao;Zeng, Wenxian
    • Animal Bioscience
    • /
    • 제35권2호
    • /
    • pp.166-176
    • /
    • 2022
  • Objective: Sperm is particularly susceptible to reactive oxygen species (ROS) stress. Glutathione (GSH) is an endogenous antioxidant that regulates sperm redox homeostasis. However, it is not clear whether boar sperm could utilize cysteine for synthesis GSH to protect sperm quality from ROS damage. Therefore, the present study was undertaken to elucidate the mechanism of how cysteine is involved in protecting boar sperm quality during liquid storage. Methods: Sperm motility, membrane integrity, lipid peroxidation, 4-hydroxyIlonenal (4-HNE) modifications, mitochondrial membrane potential, as well as the levels of ROS, GSH, and, ATP were evaluated. Moreover, the enzymes (GCLC: glutamate cysteine ligase; GSS: glutathione synthetase) that are involved in glutathione synthesis from cysteine precursor were detected by western blotting. Results: Compared to the control, addition of 1.25 mM cysteine to the liquid storage significantly increased boar sperm progressive motility, straight-line velocity, curvilinear velocity, beat-cross frequency, membrane integrity, mitochondrial membrane potential, ATP level, acrosome integrity, activities of superoxide dismutase and catalase, and GSH level, while reducing the ROS level, lipid peroxidation and 4-HNE modifications. It was also observed that the GCLC and GSS were expressed in boar sperm. Interestingly, when we used menadione to induce sperm with ROS stress, the menadione associated damages were observed to be reduced by the cysteine supplementation. Moreover, compared to the cysteine treatment, the γ-glutamylcysteine synthetase (γ-GCS) activity, GSH level, mitochondrial membrane potential, ATP level, membrane integrity and progressive motility in boar sperm were decreased by supplementing with an inhibitor of GSH synthesis, buthionine sulfoximine. Conclusion: These data suggest that boar sperm could biosynthesize the GSH from cysteine in vitro. Therefore, during storage, addition of cysteine improves boar sperm quality via enhancing the GSH synthesis to resist ROS stress.

Synergistic Renoprotective Effect of Melatonin and Zileuton by Inhibition of Ferroptosis via the AKT/mTOR/NRF2 Signaling in Kidney Injury and Fibrosis

  • Kyung Hee Jung;Sang Eun Kim;Han Gyeol Go;Yun Ji Lee;Min Seok Park;Soyeon Ko;Beom Seok Han;Young-Chan Yoon;Ye Jin Cho;Pureunchowon Lee;Sang-Ho Lee;Kipyo Kim;Soon-Sun Hong
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.599-610
    • /
    • 2023
  • According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.

종대황과 선복화 에탄올 추출물의 인간 피부 세포주인 HaCaT 세포에서 NRF2/ARE에 의존적인 유전자 발현의 유도를 통한 항산화 효과 (Ethanol Extracts of Rheum undulatum and Inula japonica Protect Against Oxidative Damages on Human Keratinocyte HaCaT cells through the Induction of ARE/NRF2-dependent Phase II Cytoprotective Enzymes)

  • 유옥경;이용걸;도기환;금영삼
    • 생명과학회지
    • /
    • 제27권3호
    • /
    • pp.310-317
    • /
    • 2017
  • 본 연구진은 HaCaT-ARE-luciferase 세포를 이용하여 400 여개의 약용식물 에탄올 추출물 중 NRF2/ARE 유도효과가 있는 신규 추출물을 검색하였고 이를 통하여 종대황(Rheum undulatum)과 선복화(Inula japonica)의 주정 추출물이 HaCaT-ARE-luciferase 세포에서 ARE 활성을 강하게 유도하는 것을 관찰하였다. 종대황과 선복화 에탄올 추출물은 HaCaT 세포에서 생존(viability)을 증가시켰고 NRF2/ARE에 의존적인 phase II cytoprotective 효소인 heme oxygenase-1 (HO-1)와 NADPH:quinone oxidoreductase-1 (NQO1)의 전사 및 단백질 발현을 강하게 유도하였다. 또한 종대황과 선복화 추출물은 HaCaT 세포에서 TPA로 유도한 세포 내 활성 산소 및 이를 통하여 생성되는 스트레스 마커인 8-hydroxydeoxyguanosine (8-OH-dG)과 4-hydroxynonenal (4HNE)의 발생을 강하게 억제하였다. 본 연구는 종대황과 선복화의 에탄올 추출물이 인간 피부 세포주인 HaCaT 세포에서 NRF2/ARE에 의존적인 유전자 발현의 유도를 통하여 강력한 항산화 효과를 발휘한다는 것을 증명한다.

Tetracycline계 항균제에 의한 호중구 Elastase의 효소 활성도 억제 및 그 작용 기전 (Inhibition of Human Neutrophil Elastase by Tetracyclines and Mechanism of the Inhibition)

  • 김우미;강구일
    • 대한약리학회지
    • /
    • 제29권1호
    • /
    • pp.131-137
    • /
    • 1993
  • Tetracycline계 약제가, 류마치양 관절염을 비롯한 염증성 질환들의 주된 병인으로 알려지고있는 호중구 elastase의 활성도를 억제하였으며, 특히 oxytetracycline, demeclocycline, 그리고 tetracycline 등은 분자 구조적 차이에 따라 elastase의 효소 활성도에 대하여 다양한 억제율을 나타내었다. 측쇄 구조의 5번 위치에 $OH{^-}$기가 첨가된 oxytetracycline이 가장 높은 억제율을 나타내었다. 억제 양상에 있어서도 tetracycline이 비경쟁적 저해 형태를 보인 반면에, oxytetracycline은 경쟁적 저해 형태를 나타내었으며, Ki값은 각각 4.9mM과 0.39mM로 산출 되었다. 또한 항균 효과를 나타내는 활성 부위를 제거시킨 de-dimethylaminotetracycline을 합성하여 효소 활성도 억제 실험에 사용한 결과, tetracycline과 유사한 효소 억제 작용을 나타냄을 확인하였다. 이상의 연구 결과에서, tetracycline의 효소 활성도 억제 작용은 항균 효과를 나타내는 활성 부위와 상관없이 독립된 기전에 의해서 일어나는 약리 작용이며, 측쇄 구조의 $OH{^-}$기가 이 작용에 영향을 주는 일부 원인인 것으로 추정할 수 있으며, 이를 tetracycline계 약제가 염증 부위에서 나타내는 분자 단계에서의 새로운 약리 기전으로 제시하고자 한다. 또한 de-dimethylaminotetracycline은 항균제의 장기 사용시에 발생할 수 있는 저항균의 출현과는 무관하므로, 다른 부작용에 대한 연구가 선행될 경우, elastase에 의해 야기되는 만성 질환들의 치료제로써 중요한 역할을 할 것으로 사료된다.

  • PDF

Salvianolic acid B가 고강도 운동부하에 의한 흰쥐 골격근과 뇌조직의 Oxidative Stress에 미치는 영향 (Effects of Salvianolic Acid B Against Oxidative Stress in Skeletal Muscle and Brain Tissue following Exhaustive Exercise in Rats)

  • 이현준;강성한;권수현;김대경;김지호;문지홍;신정원;이종수;손낙원
    • 대한본초학회지
    • /
    • 제31권5호
    • /
    • pp.99-106
    • /
    • 2016
  • Objectives : Salvianolic acid B (SAB) is an active ingredient in Salvia miltiorrhiza frequently used for cardiovascular and cerebrovascular diseases. The present study investigated the antioxidant effects of SAB on the skeletal muscle and the brain tissue of rats following exhaustive exercise.Methods : The rats were treated with oral administration of SAB (30 mg/kg) daily for 5 days prior to the exhaustive exercise. The exhaustive exercise was performed as swimming for 150 min with 5% body weight attached to the tail on the 5th day. The antioxidant effects of SAB was evaluated by measuring the superoxide generation in the gastrocnemius and the 4-HNE expression in the hippocampal tissue. In addition, c-Fos-expressing cells in the brain tissue was observed using immunohistochemistry.Results : Histological features and muscle fiber type composition were not different between the SAB group and the exhaustive exercise group. SAB significantly reduced the upregulation of superoxide generation in the muscle tissue. SAB significantly reduced the increase of c-Fos-expressing cells in the cerebral cortex, paraventricular thalamic nucleus, dorsomedial hypothalamic nucleus, the CA1, CA3, and DG regions of hippocampus. SAB significantly reduced the upregulation of 4-HNE expression in the CA1 and DG regions of hippocampus caused by the exhaustive exercise.Conclusions : The results suggest that SAB exerts antioxidative effect against oxidative stress in the skeletal muscle and the brain tissue following exhaustive exercise, while SAB may has an anti-stress effect on stress responses in the brain.

Sensitization of 5-Fluorouracil-Resistant SNUC5 Colon Cancer Cells to Apoptosis by α-Mangostin

  • Lee, June;Kang, Jong-Su;Choi, Bu-Young;Keum, Young-Sam
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.604-609
    • /
    • 2016
  • 5-fluorouracil (5-FU) is a chemotherapeutic agent commonly used for treatment of solid tumors, including colorectal cancer. However, chemoresistance against 5-fluorouracil (5-FU) often limits its success for chemotherapy and, therefore, finding out appropriate adjuvant(s) that might overcome chemoresistance against 5-FU bears a significant importance. In the present study, we have found that ${\alpha}$-mangostin can sensitize 5-FU-resistant SNUC5/5-FUR colon cancer cells to apoptosis. Exposure of ${\alpha}$-mangostin induced significant DNA damages and increased the intracellular 8-hydroxyguanosine (8-OH-G) and 4-hydroxynonenal (4-HNE) levels in SNUC5 and SNUC5/5-FUR cells. Western blot analysis illustrated that ${\alpha}$-mangostin-induced apoptosis was mediated by the activation of the extrinsic and intrinsic pathways in SNUC5/5-FUR cells. In particular, we observed that Fas receptor (FasR) level was lower in SNUC5/5-FUR cells, compared with SNUC5 cells and that silencing FasR attenuated ${\alpha}$-mangostin-mediated apoptosis in SNUC5/5-FUR cells. Together, our study illustrates that ${\alpha}$-mangostin might be an efficient apoptosis sensitizer that can overcome chemoresistance against 5-FU by activating apoptosis pathway.

Effect of combined mulberry leaf and fruit extract on liver and skin cholesterol transporters in high fat diet-induced obese mice

  • Valacchi, Giuseppe;Belmonte, Giuseppe;Miracco, Clelia;Eo, Hyeyoon;Lim, Yunsook
    • Nutrition Research and Practice
    • /
    • 제8권1호
    • /
    • pp.20-26
    • /
    • 2014
  • Obesity is an epidemic disease characterized by an increased inflammatory state and chronic oxidative stress with high levels of pro-inflammatory cytokines and lipid peroxidation. Moreover, obesity alters cholesterol metabolism with increases in low-density lipoprotein (LDL) cholesterols and triglycerides and decreases in high-density lipoprotein (HDL) cholesterols. It has been shown that mulberry leaf and fruit ameliorated hyperglycemic and hyperlipidemic conditions in obese and diabetic subjects. We hypothesized that supplementation with mulberry leaf combined with mulberry fruit (MLFE) ameliorate cholesterol transfer proteins accompanied by reduction of oxidative stress in the high fat diet induced obesity. Mice were fed control diet (CON) or high fat diet (HF) for 9 weeks. After obesity was induced, the mice were administered either the HF or the HF with combination of equal amount of mulberry leaf and fruit extract (MLFE) at 500mg/kg/day by gavage for 12 weeks. MLFE treatment ameliorated HF induced oxidative stress demonstrated by 4-hydroxynonenal (4-HNE) and modulated the expression of 2 key proteins involved in cholesterol transfer such as scavenger receptor class B type 1 (SR-B1) and ATP-binding cassette transporter A1 (ABCA1) in the HF treated animals. This effect was mainly noted in liver tissue rather than in cutaneous tissue. Collectively, this study demonstrated that MLFE treatment has beneficial effects on the modulation of high fat diet-induced oxidative stress and on the regulation of cholesterol transporters. These results suggest that MLFE might be a beneficial substance for conventional therapies to treat obesity and its complications.