• Title/Summary/Keyword: 4D- PTV

Search Result 71, Processing Time 0.023 seconds

A Dosimetric Comparision of IMRT and VMAT in Synchronous Bilateral Breast Cancer (양측성 유방암의 세기조절방사선치료(IMRT)와 부피적조절회전방사선치료(VMAT)의 비교연구)

  • Kim, Sung-Jin;Youn, Seon-Min;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.284-289
    • /
    • 2013
  • A study was performed comparing dosimetric characteristics of volumetric modulated arc and intensity modulated radiatio therapy on patients with bilateral breast cancer. For 5 patients, 3 plans were made for each patient; IMRT beams 8 and 12 of the beam intensity modulated radiation therapy, volumetric modulated arc therapy plan. The average PTVs volumes and $D_{98}$ for 12-IMRT were $51.04{\pm}0.57$ Gy (right), $50.80{\pm}1.07$ Gy (left), $42.94{\pm}16.16$ Gy (right), $42.56{\pm}2.09$ Gy (left). HI ($D_5{\sim}D_{95}$) and $CI_{90,95}$, even 12-IMRT has shown excellent results. In OAR, 3 plans showed excellent results. But the lowest dose of 12-IMRT. 12-IMRT achieved similar PTV coverage and sparing of organs at risk than 8-IMRT and VMAT.

A Study on lung dose of Intensity modulated and volumetric modulated arc therapy plans using restricted angle of Non-small cell lung cancer (비소세포 폐암의 제한된 각도를 이용한 세기변조와 용적변조회전 방사선치료계획의 폐 선량에 관한 연구)

  • Yeom, Misuk;Lee, Woosuk;Kim, Daesup;Back, Geummun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Purpose : For non-small cell lung cancer, if the treatment volume is large or the total lung volume is small, and the tumor is located in midline of patient's body, total lung dose tends to increase due to tolerance dose of spinal cord. The purpose of this study is to compare and evaluate the total lung dose of three dimensional conformal radiotherapy(3D CRT), intensity modulated radiotherapy(IMRT) and volumetric modulated arc therapy(VMAT) using restricted angle for non-small cell lung cancer patients. Materials and Methods : The treatment plans for four patients, being treated on TrueBeam STx($Varian^{TM}$, USA) with 10 MV and prescribed dose of 60 Gy in 30 fractions, 3D CRT, restricted angle IMRT and VAMT radiotherapy plans were established. Planning target volume(PTV), dose to total lung and spinal cord were evaluated using the dose volume histogram(DVH). Conformity index(CI), homogeneity index(HI), Paddick's index(PCI) for the PTV, $V_{30}$, $V_{20}$, $V_{10}$, $V_5$, mean dose for total lung and maximum dose for spinal cord was assessed. Results : Average value of CI, HI and PCI for PTV was $0.944{\pm}0.009$, $1.106{\pm}0.027$, $1.084{\pm}0.016$ respectively. $V_{20}$ values from 3D CRT, IMRT and VMAT plans were 30.7%, 20.2% and 21.2% for the first patient, 33.0%, 29.2% and 31.5% for second patient, 51.3%, 34.3% and 36.9% for third patient, finally 56.9%, 33.7% and 40.0% for the last patient. It was noticed that the $V_{20}$ was lowest in the IMRT plan using restricted angle. Maximum dose for spinal cord was evaluated to lower than the tolerance dose. Conclusion : For non-small cell lung cancer, IMRT with restricted angle or VMAT could minimize the lung dose and lower the dose to spinal cord below the tolerance level. Considering PTV coverage and tolerance dose to spinal cord, it was possible to obtain IMRT plan with smaller angle and this could result in lower dose to lung when compared to VMAT.

Evaluating efficiency of Split VMAT plan for prostate cancer radiotherapy involving pelvic lymph nodes (골반 림프선을 포함한 전립선암 치료 시 Split VMAT plan의 유용성 평가)

  • Mun, Jun Ki;Son, Sang Jun;Kim, Dae Ho;Seo, Seok Jin
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.145-156
    • /
    • 2015
  • Purpose : The purpose of this study is to evaluate the efficiency of Split VMAT planning(Contouring rectum divided into an upper and a lower for reduce rectum dose) compare to Conventional VMAT planning(Contouring whole rectum) for prostate cancer radiotherapy involving pelvic lymph nodes. Materials and Methods : A total of 9 cases were enrolled. Each case received radiotherapy with Split VMAT planning to the prostate involving pelvic lymph nodes. Treatment was delivered using TrueBeam STX(Varian Medical Systems, USA) and planned on Eclipse(Ver. 10.0.42, Varian, USA), PRO3(Progressive Resolution Optimizer 10.0.28), AAA(Anisotropic Analytic Algorithm Ver. 10.0.28). Lower rectum contour was defined as starting 1cm superior and ending 1cm inferior to the prostate PTV, upper rectum is a part, except lower rectum from the whole rectum. Split VMAT plan parameters consisted of 10MV coplanar $360^{\circ}$ arcs. Each arc had $30^{\circ}$ and $30^{\circ}$ collimator angle, respectively. An SIB(Simultaneous Integrated Boost) treatment prescription was employed delivering 50.4Gy to pelvic lymph nodes and 63~70Gy to the prostate in 28 fractions. $D_{mean}$ of whole rectum on Split VMAT plan was applied for DVC(Dose Volume Constraint) of the whole rectum for Conventional VMAT plan. In addition, all parameters were set to be the same of existing treatment plans. To minimize the dose difference that shows up randomly on optimizing, all plans were optimized and calculated twice respectively using a 0.2cm grid. All plans were normalized to the prostate $PTV_{100%}$ = 90% or 95%. A comparison of $D_{mean}$ of whole rectum, upperr ectum, lower rectum, and bladder, $V_{50%}$ of upper rectum, total MU and H.I.(Homogeneity Index) and C.I.(Conformity Index) of the PTV was used for technique evaluation. All Split VMAT plans were verified by gamma test with portal dosimetry using EPID. Results : Using DVH analysis, a difference between the Conventional and the Split VMAT plans was demonstrated. The Split VMAT plan demonstrated better in the $D_{mean}$ of whole rectum, Up to 134.4 cGy, at least 43.5 cGy, the average difference was 75.6 cGy and in the $D_{mean}$ of upper rectum, Up to 1113.5 cGy, at least 87.2 cGy, the average difference was 550.5 cGy and in the $D_{mean}$ of lower rectum, Up to 100.5 cGy, at least -34.6 cGy, the average difference was 34.3 cGy and in the $D_{mean}$ of bladder, Up to 271 cGy, at least -55.5 cGy, the average difference was 117.8 cGy and in $V_{50%}$ of upper rectum, Up to 63.4%, at least 3.2%, the average difference was 23.2%. There was no significant difference on H.I., and C.I. of the PTV among two plans. The Split VMAT plan is average 77 MU more than another. All IMRT verification gamma test results for the Split VMAT plan passed over 90.0% at 2 mm / 2%. Conclusion : As a result, the Split VMAT plan appeared to be more favorable in most cases than the Conventional VMAT plan for prostate cancer radiotherapy involving pelvic lymph nodes. By using the split VMAT planning technique it was possible to reduce the upper rectum dose, thus reducing whole rectal dose when compared to conventional VMAT planning. Also using the split VMAT planning technique increase the treatment efficiency.

  • PDF

Measurement of 3-D Flow inside a Micro Curved-tube using Digital Micro Holographic Particle Tracking Velocimetry (디지털 Micro Holographic PTV기법을 이용한 미세 곡관 내부 3차원 유동 측정)

  • Kim, Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2579-2584
    • /
    • 2007
  • A digital micro holographic particle tracking velocimetry (HPTV) system consisting of a high-speed camera and a single laser with acoustic optical modulator (AOM) chopper was established. The digital micro HPTV system was applied to water flow in a micro curved-tube for measuring instantaneous 3-D velocity field data consecutively. The micro curved-tube is using to reproduce the dorsal aorta or utilize in various lap-on-a-chip. The temporal evolution of a three-dimensional water flow in the micro curved-tube (the curvature, ${\kappa}$=1/${\phi}$, 2/${\phi}$, 4/${\phi}$, 8/${\phi}$) of 100 ${\mu}m$ and 300 ${\mu}m$ inner diameters was obtained and mean velocity field distribution was obtained by statistical-averaging the instantaneous velocity fields.

  • PDF

Comparative Study Between Respiratory Gated Conventional 2-D Plan and 3-D Conformal Plan for Predicting Radiation Hepatitis (간암에서 호흡주기를 고려한 2-차원 방사선 치료 방법과 3-차원 입체조형 치료방법에서 방사선 간염 예측의 비교연구)

  • Lee Sang-wook;Kim Gwi Eon;Chung Kap Soo;Lee Chang Geol;Seong Jinsil;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.455-467
    • /
    • 1998
  • Purpose : To evaluate influences associated with radiation treatment planning obtained with the patient breathing freely. Materials and Methods : We compared reduction or elimination of planning target volume (PTV) margins with 2-D conventional plan with inclusion of PTV margins associated with breathing with 3-D conformal therapy. The respiratory non gated 3-D conformal treatment plans were compared with respiratory gated conventional 2-D plans in 4 patients with hepatocellular carcinomas. Isodose distribution, dose statistics, and dose volume histogram (DVH) of PTVs were used to evaluate differences between respiratory gated conventional 2-D plans and respiratory non gated 3-D conformal treatment plans. In addition. the risk of radiation exposure of surrounding normal liver and organs are evaluated by means of DVH and normal tissue complication probabilities (NTCPs). Results : The vertical movement of liver ranged 2-3 cm in all patients. We found no difference between respiratory gated 2-D plans and 3-D conformal treatment plans with the patients breathing freely. Treatment planning using DVH analysis of PTV and the normal liver was used for all patients. DVH and calculated NTCP showed no difference in respiratory gated 2-D plans and respiratory non gated 3-D conformal treatment plans. Conclusion : Respiratory gated radiation therapy was very important in hepatic tumors because radiation induced hepatitis was dependent on remaining normal liver volume. Further investigational studies for respiratory gated radiation.

  • PDF

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.

A Study on the Reduction of Organ Motion from Respiration (호흡 운동에 의한 내부 장기의 움직임 감소에 관한 연구)

  • Kim Jae-Gyoun;Lee Dong-Han;Lee Dong-Hoon;Kim Mi-Sook;Cho Chul-Koo;Yoo Seong-Yul;Yang Kwang-Mo;Oh Won-Yong;Ji Young-Hoon
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.179-185
    • /
    • 2004
  • To deal with tumor motion from respiration is one of the important issues for the advanced treatment techniques, such as the intensity modulated radiation therapy (IMRT), the image guided radiation therapy (IGRT), the three dimensional conformal therapy (3D-CRT) and the Cyber Knife. Studies including the active breath control (ABC) and the gated radiation therapy have been reported. Authors have developed the device for reducing the respiration effects and the diaphragm motions with this device were observed to determined the effectiveness of the device. The device consists of four belts to immobilize diaphragm motion and the vacuum cushion. Diaphragm motions without and with device were monitored fluoroscopically. Diaphragm motion ranges were found to be 1.14 ~ 3.14 cm (average 2.14 cm) without the device and 0.72~1.95 cm (average 1.16 cm) with the device. The motion ranges were decreased 20 ~ 68.4% (average 44.9%.) However, the respiration cycle was increased from 4.4 seconds to 3.7 seconds. The CTV-PTV margin could be decreased significantly with the device developed in this study, which may be applied to the treatments of the tumor sited diaphragm region.

  • PDF

Dosimetric Comparison between Varian Halcyon Analytical Anisotropic Algorithm and Acuros XB Algorithm for Planning of RapidArc Radiotherapy of Cervical Carcinoma

  • Mbewe, Jonathan;Shiba, Sakhele
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.130-136
    • /
    • 2021
  • Purpose: The Halcyon radiotherapy platform at Groote Schuur Hospital was delivered with a factory-configured analytical anisotropic algorithm (AAA) beam model for dose calculation. In a recent system upgrade, the Acuros XB (AXB) algorithm was installed. Both algorithms adopt fundamentally different approaches to dose calculation. This study aimed to compare the dose distributions of cervical carcinoma RapidArc plans calculated using both algorithms. Methods: A total of 15 plans previously calculated using the AAA were retrieved and recalculated using the AXB algorithm. Comparisons were performed using the planning target volume (PTV) maximum (max) and minimum (min) doses, D95%, D98%, D50%, D2%, homogeneity index (HI), and conformity index (CI). The mean and max doses and D2% were compared for the bladder, bowel, and femoral heads. Results: The AAA calculated slightly higher targets, D98%, D95%, D50%, and CI, than the AXB algorithm (44.49 Gy vs. 44.32 Gy, P=0.129; 44.87 Gy vs. 44.70 Gy, P=0.089; 46.00 Gy vs. 45.98 Gy, P=0.154; and 0.51 vs. 0.50, P=0.200, respectively). For target min dose, D2%, max dose, and HI, the AAA scored lower than the AXB algorithm (41.24 Gy vs. 41.30 Gy, P=0.902; 47.34 Gy vs. 47.75 Gy, P<0.001; 48.62 Gy vs. 50.14 Gy, P<0.001; and 0.06 vs. 0.07, P=0.002, respectively). For bladder, bowel, and left and right femurs, the AAA calculated higher mean and max doses. Conclusions: Statistically significant differences were observed for PTV D2%, max dose, HI, and bowel max dose (P>0.05).

Evaluation of the Modified Hybrid-VMAT for multiple bone metastatic cancer (다중표적 뼈 전이암의 하이브리드 세기변조(modified hybrid-VMAT) 방사선치료계획 유용성 평가)

  • Jung, Il Hun;Cho, Yoon Jin;Chang, Won Suk;Kim, Sei Joon;Ha, Jin Sook;Jeon, Mi Jin;Jung, In Ho;Kim, Jong Dea;Shin, Dong Bong;Lee, Ik Jae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.161-167
    • /
    • 2018
  • Purpose : This study evaluates the usefulness of the Modified Hybrid-VMAT scheme with consideration of background radiation when establishing a treatment plan for multiple bone metastatic cancer including multiple tumors on the same axis. Materials and Methods : The subjects of this study consisted of five patients with multiple bone metastatic cancer on the same axis. The planning target volume(PTV) prescription dose was 30 Gy, and the treatment plan was established using Ray Station(Ray station, 5.0.2.35, Sweden). In the treatment plan for each patient, two or more tumors were set as one isocenter. A volumetric modulated arc therapy(VMAT) plan, a hybrid VMAT(h) plan with no consideration of background radiation, and a modified hybrid VMAT(mh) with consideration of background radiation were established. Then, using each dose volume histogram(DVH), the PTV maximum dose($D_{max}$), mean dose($D_{mean}$), conformity index(CI), and homogeneity index(HI) were compared among the plans. In addition, the organ at risk(OAR) of each treatment site was evaluated, and the total MU(Monitor Unit) and treatment time were also analyzed. Results : The PTV $D_{max}$ values of VMAT, VMAT(h) and VMAT(mh) were 3188.33 cGy, 3526 cGy, and 3285.67 cGy, the $D_{mean}$ values were 3081 cGy, 3252 cGy, and 3094 cGy; the CI values were $1.35{\pm}0.19$, $1.43{\pm}0.12$, and $1.30{\pm}0.06$; the HI values were $1.06{\pm}0.01$, $1.14{\pm}0.06$, and $1.09{\pm}0.02$; and the VMAT(h) OAR value was increased 3 %, and VMAT(mh) OAR value was decreased 18 %, respectively. Furthermore, the mean MU values were 904.90, 911.73, and 1202.13, and the mean beam on times were $128.67{\pm}10.97$, $167.33{\pm}7.57$, and $190.33{\pm}4.51$ respectively. Conclusions : Applying Modified Hybrid-VMAT when treating multiple targets can prevent overdose by correcting the overlapping of doses. Furthermore, it is possible to establish a treatment plan that can protect surrounding normal organs more effectively while satisfying the inclusion of PTV dose. Long-term follow-up of many patients is necessary to confirm the clinical efficacy of Modified Hybrid-VMAT.

  • PDF

The Role of Modern Radiotherapy Technology in the Treatment of Esophageal Cancer

  • Moon, Sung Ho;Suh, Yang-Gun
    • Journal of Chest Surgery
    • /
    • v.53 no.4
    • /
    • pp.184-190
    • /
    • 2020
  • Radiation therapy (RT) has improved patient outcomes, but treatment-related complication rates remain high. In the conventional 2-dimensional and 3-dimensional conformal RT (3D-CRT) era, there was little room for toxicity reduction because of the need to balance the estimated toxicity to organs at risk (OARs), derived from dose-volume histogram data for organs including the lung, heart, spinal cord, and liver, with the planning target volume (PTV) dose. Intensity-modulated RT (IMRT) is an advanced form of conformal RT that utilizes computer-controlled linear accelerators to deliver precise radiation doses to the PTV. The dosimetric advantages of IMRT enable better sparing of normal tissues and OARs than is possible with 3D-CRT. A major breakthrough in the treatment of esophageal cancer (EC), whether early or locally advanced, is the use of proton beam therapy (PBT). Protons deposit their highest dose of radiation at the tumor, while leaving none behind; the resulting effective dose reduction to healthy tissues and OARs considerably reduces acute and delayed RT-related toxicity. In recent studies, PBT has been found to alleviate severe lymphopenia resulting from combined chemo-radiation, opening up the possibility of reducing immune suppression, which might be associated with a poor prognosis in cases of locally advanced EC.