• Title/Summary/Keyword: 4D nanofabrication

Search Result 2, Processing Time 0.015 seconds

Four-dimensional nanofabrication for next-generation optical devices

  • Moohyuk Kim;Myung-Ki Kim
    • Journal of the Korean Physical Society
    • /
    • v.81
    • /
    • pp.516-524
    • /
    • 2022
  • Recently, three-dimensional (3D) nano-processing technology that can increase design freedom and space efficiency of devices has been being rapidly developed, and is highly expected to provide a key path for the development of next-generation optical devices. This technology has shown a high possibility of success in realizing the future devices, but still are facing many challenges in the popularization and practical application. In particular, the ability of quickly, precisely, and stably fabricating complex 3D nanostructures composed of many individual elements is strongly demanded. In recent years, the so-called four-dimensional (4D) nanofabrication technology is attracting attention. The 4D nanofabrication is achieved by applying an external force to manufactured two-dimensional nanostructures, inducing deformation in time, and then precisely transforming them into 3D nanostructures. The 4D nanofabrication technology with excellent flexibility, versatility, functionality, and reconfiguration properties provides a new paradigm enabling effectively control the mechanical, electrical, and optical properties of existing materials. In this review, we examine the conventional methods for fabricating 3D nanostructures, and then investigate 4D nanofabrication technology in detail.

Nanofabrication of InP/InGaAsP 2D photonic crystals using maskless laser holographic method (레이저 홀로그래피 방법과 반응성 이온식각 방법을 이용한 InP/InGaAsP 광자 결정 구조 제작)

  • 이지면;이민수;이철욱;오수환;고현성;박상기;박문호
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.309-312
    • /
    • 2004
  • Two-dimensionally arrayed nanocolumn lattices were fabricated by using double-exposure laser holographic method. The hexagonal lattice was formed by rotating the sample with 60 degree while the square lattice by 90 degree before the second laser-exposure. The size and period of nanocolumns could be controlled accurately from 125 to 145 nm in diameter and 220 to 290 nm in period for square lattice by changing the incident angle of laser beam. The reactive ion etching for a typical time of 30 min using CH$_4$/H$_2$ plasma enhanced the aspect-ratio by more than 1.5 with a slight increase of the bottom width of columns.