• Title/Summary/Keyword: 4C/ID model

Search Result 13, Processing Time 0.017 seconds

Biodistribution of Iodine-131-Iodomisonidazole and Imaging of Tumor Hypoxia in Mice bearing CT-26 Adenocarcinoma (CT-26 선암을 접종한 마우스에서 Iodine-131-Iodomisonidazole의 생체분포 및 종양저산소증의 영상화)

  • Kim, Hye-Won;Kim, Chang-Guhn;Yoon, Kwon-Ha;Kim, Hyun-Jeong;Juhng Seon-Kwan;Roh, Byung-Suk;Yang, David J.;Kim, E.Edmund;Lee, Hyun-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.289-297
    • /
    • 1999
  • Purpose: Misonidazole is a radiosensitizer that binds in hypoxic cells. The purpose of this study was to find out the feasibility of I-131-Iodomisonidazole (IMISO) for imaging of tumor hypoxia. Materials and Methods: Tosyl precursor was dissolved in acetonitrile and I-131-NaI was added to synthesize IMISO. Balb/c mice inoculated with CT-26 adenocarcinoma were injected with IMISO. Mice were sacrificed at 1, 2, 4, 24 hr and % of injected dose per gram of tissue (%ID/g) was determined. For scintigraphy and MRI, mouse bearing CT-26 adenocarcinoma was administered with IMISO and imaging was performed 4 hr after. Then, mouse body was fixed and microtomized slice was placed on radiographic film for autoradiography Results: %ID/g of tumor was 1.64 (1h), 0.98 (2h), 0.85 (4h) and 0.20 (24h), respectively. At 24h, %ID/g of tumor was higher than that of all other tissues except thyroid. Tumor to muscle ratio increased with time and tumor to blood ratio also increased with time and reached 1.53 at 24 hr. On autoradiogram, tumor was well visualized as an increased activity in central hypoxic area of the tumor which corresponds to the area of high signal intensity on T2-weighted MR image. On scintigraphy, tumor uptake was visualized. Conclusion: This results suggest that IMISO may have a potential for tumor hypoxia imaging in mouse model. However, further study is needed to improve it's localization in tumor tissue and to achieve acceptable images of tumor hypoxia.

  • PDF

$^{99m}Tc-Labeling$ of Monoclonal Antibody to Carcinoembryonic Antigen and Biodistribution (항 암태아성항원에 대한 단세포군항체의 $^{99m}Tc$ 표지법개발 및 생체분포)

  • Moon, Dae-Hyuk;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Chung, Hong-Keun;Park, Jae-Gahb
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.2
    • /
    • pp.380-391
    • /
    • 1992
  • This study was designed to evaluate a direct method of $^{99m}Tc$ labeling using $\beta-mercaptoethanol$ as a reducing agent, and to investigate whether $^{99m}Tc$ labeled specific monoclonal antibody against carcinoembryonic antigen (CEA-92) can be used for the scintigraphic localization of human colon cancer xenograft. Purified CEA-92 IgG was fragmented into F $(ab')_2$ and then labeled with $^{99m}Tc$ by transchelation method using glucarate as a chelator. Labeling efficiency, immunological reactivity and in vitro stability of $^{99m}Tc$ CEA-92 F $(ab')_2$ were measured and then injected intravenously into nude mice bearing human colon cancer (SNU-C4). Scintigrams were obtained at 24 hour after injection. Then nude mice were sacrificed and the radioactivity was measured Labeling efficiency of injected $^{99m}Tc$ CEA-92 F $(ab')_2$, immunoreative fraction and in vitro stability at 24 hour of injected $^{99m}Tc$ CEA-92 F $(ab')_2$ was 45.2%, 32.8% and 57.4%, respectively. At 24 hour after injection, % ID/g in kidney (46.77) showed high uptake, but %ID/g in tumor (1.65) was significantly higher than spleen (0.69), muscle (0.16), intestine (0.45), stomach (0.75), heart (0.48) and blood (0.45). There was no significant difference between tumor and liver (1.81). Tumor contrast as quantitated by tumor to blood ratio of $^{99m}Tc$ CEA-92 F $(ab')_2$ was increased significantly (p<0.005) until 24 hours (3.70), and there was no statistical differece from tumor to blood ratio of I-131 CEA-92 F $(ab')_2$. The scintigram demonstrated localization of radioactivity over transplanted tumor, but significant background radioactivity was also noted over kidney and abdomen. It is concluded that CEA-92 F $(ab')_2$ can be labeled with $^{99m}Tc$ by a direct transchelation method using $\beta-mercaptoethanol$ as a reducing agent and $^{99m}Tc$ labeled CEA-92 F $(ab')_2$ can be used for the scintigraphic localization of human colon cancer xenograft in nude mice model.

  • PDF

Evaluation of the Radioimmunotherapy Using I-131 labeled Vascular Endothelial Growth Factor Receptor2 Antibody in Melanoma Xenograft Murine Model (흑색종에서의 I-131표지 혈관내피세포성장인자 수용체2항체를 이용한 방사면역치료 평가)

  • Kim, Eun-Mi;Jeong, Hwan-Jeong;Park, Eun-Hye;Cheong, Su-Jin;Lee, Chang-Moon;Jang, Kyu-Yun;Kim, Dong-Wook;Lim, Seok-Tae;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.4
    • /
    • pp.307-313
    • /
    • 2008
  • Purpose: Vascular endothelial growth factor (VEGF) and its receptor, fetal liver kinase 1 (Flk-1), play an important role in vascular permeability and tumor angiogenesis. The aim of this study is to evaluate the therapeutic efficacy of $^{131}I$ labeled anti-Flk-1 monoclonal antibody (DC101) on the growth of melanoma tumor, which is known to be very aggressive in vivo. Materials and Methods: Balb/c nude mice were injected subcutaneously with melanoma cells in the right flank. Tumors were allowed to grow up to $200-250\;mm^3$ in volume. Gamma camera imaging and biodistribution studies were performed to identify an uptake of $^{131}I$-DC101 in various organs. Mice with tumor were randomly divided into five groups (10 mice per group) and injected intravenously; control PBS (group 1), $^{131}I$-DC101 $50\;{\mu}g/mouse$ (group 2), non-labeled DC101 $50\;{\mu}g/mouse$ (group 3), $^{131}I$-DC101 $30\;{\mu}g/mouse$ (group 4) and $15\;{\mu}g/mouse$ (group 5) every 3 or 4 days for 20 days. Tumor volume was measured with caliper twice a week. Results: In gamma camera images, the uptake of $^{131}I$-DC101 into tumor and thyroid was increased with time. Biodistribution results showed that the radioactivity of blood and other major organ was gradually decreased with time whereas tumor uptake was increased up to 48 hr and then decreased. After 4th injection of $^{131}I$-DC101, tumor volume of group 2 and 4 was significantly smaller than that group 1. After 5th injection, the tumor volume of group 5 also significantly reduced. Conclusion: These results indicated that delivery of $^{131}I$ to tumor using FlK-1 antibody, DC101, effectively blocks tumor growth in aggressive melanoma xenograft model.