• Title/Summary/Keyword: 4-stage BNR process

Search Result 5, Processing Time 0.022 seconds

A Comparative Analysis of the Bacterial Growth Kinetic Parameters for Various Biological Nutrient Removal Processes (각종 질소·인 제거공정에서 도출된 미생물 성장 동역학 계수 비교 분석)

  • Lim, Se-Ho;Ko, Kwang Baik;Oh, Young-Khee
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.647-651
    • /
    • 2004
  • In this study, some of bacterial growth kinetic parameters were delineated and evaluated for the biological nutrient removal processes such as the $A^2/O$, 4stage-BNR, Intermittent Cycle Extended Aeration System(ICEAS) and Intermittently Aerated Cylindrical Oxidation Ditch(IACOD) processes. $Y_H$ values for the ICEAS process ranged from 0.71 to 0.74, and were higher than those for the other processes. It seems to indicated that organic carbons uptaked by microorganism were more used up for cell synthesis rather than for energy components in the ICEAS process. $b_H$ for the ICEAS and IACOD processes were lower than those for $A^2/O$ and 4stage-BNR processes. The $\mu_{max{\cdot}A}$ for the ICEAS was higher than those for the other processes, which indicated that desirable operating conditions for nitrifying bacteria's growth were established.

Comparative Analysis of Biomass Yield Coefficient (YH) in Different Metabolic Regimes of Aerobic, Anoxic and Anaerobic Conditions (하수고도처리 공정내 호기성, 무산소성 및 혐기성 반응조에서 종속영양 미생물 생산계수, YH의 비교분석)

  • Shin, Jung Sub;Ko, Kwang Baik;Lee, Ji Young;Lim, Se Ho;Kang, Seung Hyun;Park, Jae Han
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.451-455
    • /
    • 2006
  • Heterotrophic biomass yield coefficients, $Y_H$, for aerobic, anoxic and anaerobic reactors were successfully estimated for the two wastewater treatment plants, where one plant was operating in the $A^2/O$ process and the other was operating in the 4-stage BNR process. The estimation of $Y_H$ was undertaken by plotting the biomass COD concentrations versus the soluble COD concentrations in order to calculate the ${\Delta}biomass$ COD/ ${\Delta}soluble$ COD in each batch reactor. The batch reactors employed in this study were fed by filtered influent and mixed liquors in the ratio of 10:1, and operated in the aerobic, anoxic and anaerobic conditions, which represented the actual operating conditions for the $A^2/O$ and 4-stage BNR process. The average $Y_H$ values of the aerobic, anoxic and anaerobic reactor for the $A^2/O$ process were 0.52, 0.41 and 0.18 mg COD/mg COD, respectively, and those for the 4-stage BNR process were 0.58, 0.40 and 0.20 mg COD/mg COD, respectively. The average ratio of the $Y_H$ for aerobic reactors to those for the anoxic reactors were about 1:0.79 for the $A^2/O$ process, and about 1:0.69 for the 4-stage BNR process. The experimental method for anoxic and anaerobic $Y_H$ estimation shown in this study has turned out to be simple and efficient in its practical application.

A Study on the Filtration of BNR Process Effluent (BNR공정 처리수의 여과에 관한 연구)

  • Kim, Seong-Young;Bum, Bong-Su;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.895-905
    • /
    • 2000
  • This study was performed to investigate the removal efficiencies of pollutants at various filtration rates and the quality of the filtered water along the depth of filter media during treatment of a BNR process effluent by a dual-media gravitational rapid filtration. The results of the experiments at filtration rates of 200, 300 and 400 m/day using the effluent of a pilot scale 4-stage BNR plant showed that turbidity of the filtered water was below 2.6 NTU, satisfying the Korean standard for water for reuse. Even though the SS removal efficiency deteriorated as the filtration rate increased, the average SS concentration of the filtered water was 1.3 mg/L at all filtration rates. Simultaneous biological nitrification and denitrification was observed with nitrification efficiencies of 17.4, 18.8 and 14.3%, and denitrification efficiencies of 32.3, 27.7 and 21.4% respectively at filtration rates of 200, 300 and 400 m/day. At the latter period of each filtration cycle, the effluent T-P concentration was higher than influent T-P concentration by 6.1 to 21.4% due to phosphorous release under DO-deficient condition.

  • PDF

Evaluation of Operational Options of Wastewater Treatment Using EQPS Models (EQPS 모델을 이용한 하수처리장 운전 평가)

  • Yoo, Hosik;Ahn, Seyoung
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.401-408
    • /
    • 2018
  • EQPS (Effluent Quality Prediction System, Dynamita, France) was applied to analyze the appropriateness of the design of a bioreactor in A sewage treatment plant. A sewage treatment plant was designed by setting the design concentration of the secondary clarifier effluent to total nitrogen and total phosphorus, 10 mg/L and 1.8 mg/L, respectively, in order to comply with the target water quality at the level of the hydrophilic water. The retention time of the 4-stage BNR reactor was 9.6 hours, which was 0.5 for the pre-anoxic tank, 1.0 for the anaerobic tank, 2.9 for the anoxic tank, and 5.2 hours for the aerobic tank. As a result of the modeling of the winter season, the retention time of the anaerobic tank was increased by 0.2 hours in order to satisfy the target water quality of the hydrophilic water level. The default coefficients of the one step nitrification denitrification model proposed by the software manufacturer were used to exclude distortion of the modeling results. Since the process modeling generally presents optimal conditions, the retention time of the 4-stage BNR should be increased to 9.8 hours considering the bioreactor margin. The accurate use of process modeling in the design stage of the sewage treatment plant is a way to ensure the stability of the treatment performance and efficiency after construction of the sewage treatment plant.

Microbial Community Analysis of 5-Stage Biological Nutrient Removal Process with Step Feed System

  • Park, Jong-Bok;Lee, Han-Woong;Lee, Soo-Youn;Lee, Jung-Ok;Bang, Iel-Soo;Park, Eui-So;Park, Doo-Hyun;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.929-935
    • /
    • 2002
  • The 5-stage biological nutrient removal (BNR) process with step feed system showed a very stable organic carbon and nutrient removal efficiency ($87\%\;COD\,;79\%\;nitrogen,\;and\;87\%$ phosphorus) for an operation period of 2 years. In each stage at the pilot plant, microbial communities, which are important in removing nitrogen and phosphorus, were investigated using fluorescence in-situ hybridization (FISH) and 165 rDNA characterization. All tanks of 5-stage sludge had a similar composition of bacterial communities. The totat cell numbers of each reactor were found to be around $2.36-2.83{\times}10^9$ cells/ml. About $56.5-62.0\%$ of total 4,6-diamidino-2-phenylindol (DAPI) cells were hybridized to the bacterial-specific probe EUB388. Members of ${\beta}$-proteobacteria were the most abundant proteobacterial group, accounting for up to $20.6-26.7\%$. The high G+C Gram-positive bacterial group and Cytophaga-Flexibacter cluster counts were also found to be relatively high. The beta subclass proteobacteria did not accumulate a large amount of polyphosphate. The proportion of phosphorus-accumulating organisms (PAOs) in the total population of the sludge was almost $50\%$ in anoxic-1 tank. The high G+C Gram-positive bacteria and Cytophaga-Flexibacter cluster indicate a key role of denitrifying phosphorus-accumulating organisms (dPAOs). Both groups might be correlated with some other subclass of proteobacteria for enhancing nitrogen and phosphorus removal in this process.