• Title/Summary/Keyword: 4-point Bending Strength

Search Result 236, Processing Time 0.027 seconds

The Effect of Heat-treatment on Brazing Characteristics of WC-9%Co/SUJ2 Steel (WC-9%Co와 SUJ2강의 접합특성에 미치는 열처리의 영향)

  • 정하윤;김종철;박경채
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.56-63
    • /
    • 1997
  • In The study, the bonding of WC-9%Co to SUJ2 steel using Ag-Cu-Zn-Cd insert metal has performed to investigate the bonding properties by heat-treatment. Bonding was brazed for 5-30min at 95$0^{\circ}C$, performed solution treatment for 5 min at 85$0^{\circ}C$ and sustained subsequently oil quenching. To investigate the effect of heat-treatment, tempering was executed at $600^{\circ}C$ for 30 min after oil quenching. Mechnical properties and chemical compositions on the brazed bonding interface were investigated by means of microstructural observation, 4-point bending test and EDS and XRD measurements. The results obtained were as follows. 1) The bonding strength of WC-9%Co/SUJ2 joints by Ag-Cu-Zn-Cd insert metal obtained about 78, 117 and 72MPa after brazing for 5, 20 and 30 min at 95$0^{\circ}C$. And the highest bonding strength obtained about 131MPa after brazing for10 min at 95$0^{\circ}C$ 2) Higher bonding strength of 288MPa was obtained in the joint that brazed for 10 min at 95$0^{\circ}C$, and carried out tempering for 30 min at $600^{\circ}C$ subsequently. 3) Fracture of joint brazed by Ag-Cu-Zn-Cd insert metal for 5, 10, 20 and 30 min created WC-9%Co/SUJ2 interface. The joint that brazed for 10 min at 95$0^{\circ}C$ and then tempered for 30 min at $600^{\circ}C$ was fractured at the site of WC-9%Co.

  • PDF

Effect of Various Oxides on Crystallization of Lithium Silicate Glasses (다양한 산화물들이 리튬규산염 유리의 결정화에 미치는 영향)

  • Kim, Chul-Min;Lim, Hyung-Bong;Kim, Youg-Su;Kim, Se-Hoon;Oh, Kyung-Sik;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.269-277
    • /
    • 2011
  • Glass-ceramics based on lithium disilicate($Li_2Si_2O_5$) are prepared by heat-treatment of glasses in a system of $SiO_2-Li_2O-K_2O-Al_2O_3$ with different compositions. The crystallization heat-treatment was conducted at the temperature range of $700{\sim}900^{\circ}C$ and samples were analyzed by XRD and SEM. Mechanical properties were determined by a Vicker's hardness and 4 point bending strength. When $SiO_2/Li_2O$ ratio increased, cristobalite and tridymite crystals showed more predominate than lithium disilicate crystals. Increase in $Al_2O_3$ contents in the glass suppressed crystallzation of lithium disilicate crystals. Increase in ZnO, $B_2O_3$ contents in the glass decreased crystallization temperature of lithium disilicate crystals, and increased mechanical properties because of the reduction of the lithium disilicate crystal size.

Synthesis and Sintering of Cordierite by using Coprecipitation Method (공침법에 의한 Cordierite분말의 합성 및 소결에 관한 연구)

  • 한문희;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.899-906
    • /
    • 1990
  • The cordierite powders were prepared from Mg(NO3)2.6H2O, Al(NO3)3.9H2O and colloidal silica by the coprecippitation method, and the sintering behavior of the powders were investigated. Two different methods were applied for producing the precursor powders. The one was to added the aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O to NH4OH to adjust pH at 10 where the colloidal silica of pH 10 was added. The other wa to add the aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O to the colloidal silica with NH4OH to control the final mixture to be at pH 10. It was confirmed that more homogeneous powders were obtained from the latter method. The firing linear shrinkage of the powder compacts fabricated from the calcined powder between 90$0^{\circ}C$ and 110$0^{\circ}C$ was found to be larger as the calcination temperature was low. But all of them stopped shrinking around 120$0^{\circ}C$. The powder compacts, fabricated using the calcined powders at 90$0^{\circ}C$ and 95$0^{\circ}C$ for 2hours and sintered at 142$0^{\circ}C$ for 2hours, showed relative density of 93-96%, 3-point bending strength of 81-83MPa, KIC of 1.9-2.4 MPam1/2 and thermal expansion coefficient of 0.213-0.732$\times$10-6$^{\circ}C$.

  • PDF

Experimental and numerical study of the behavior of fiber reinforced concrete beams with nano-graphene oxide and strengthening CFRP sheets

  • Mohammad Reza Halvaeyfar;Ehsanollah Zeighami;S. Mohammad Mirhosseini;Ali Hassani Joshaghani
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In many fiber concrete beams with Carbon Fiber Reinforced Polymer (CFRP), debonding occurs between the carbon sheets and the concrete due to the low strength of the bonding resin. A total of 42 fiber concrete beams with a cross-section of 10×10 cm with a span length of 50 cm are fabricated and retrofitted with CFRP and subjected to a 4-point bending test. Graphene Oxide (GO) at 1, 2, and 3 wt% of the resin is used to improve the mechanical properties of the bonding resins, and the effect of length, width, and the number of layers of CFRP and resin material are investigated. The crack pattern, failure mode, and stress-strain curve are analyzed and compared in each case. The results showed that adding GO to polyamine resin could improve the bonding between the resin and the fiber concrete beam. Furthermore, the optimum amount of nanomaterials is equal to 2% by the weight of the resin. Using 2% nanomaterials showed that by increasing the length, width, and number of layers, the bearing and stiffness of fiber concrete beams increased significantly.

The Effect of Oxygen Content on the Glass Forming Ability and Mechanical Properties of the Zr-based Amorphous Alloy Return Scrap (Zr기지 비정질 합금 스크랩의 비정질 형성능 및 기계적 성질에 미치는 산소함량의 영향)

  • Kim, Sung-Gyoo;Lee, Byung-Chul;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.35 no.4
    • /
    • pp.75-79
    • /
    • 2015
  • Commercial Zr-based amorphous alloy was recycled and oxygen was introduced during the recycling process. The oxygen content can have a great effect on the glass forming ability and the mechanical properties of the alloy. Therefore, it was closely examined. The initial oxygen content in the raw material was 1,244 ppm. It was increased to 3,789 ppm in the alloy after ten recycling processes. As the recycling processes were repeated, the oxygen content increased. Specifically, after four recycling processes, it increased sharply as compared to that after three recycling processes. After ten recycling processes, the glass transition temperature (Tg) increased from 613 K to 634 K and the crystallization temperature (Tx) increased from 696 K to 706 K. On the other hand, the super-cooled liquid region (${\Delta}T=Tx-Tg$) decreased slightly from 83 K to 72 K while the reduced glass transition temperature (Trg = Tg/Tm) was 0.63, remaining constant even when the oxygen content was increased. These results indicated that the increased oxygen content deteriorated the glass forming ability. The bending strength as determined in a three-point bending test showed a sharp decrease from 3,055 to 2,062 MPa as the oxygen content was increased from 1,244 ppm to 3,789 ppm; the extension was also decreased from 3.02 to 1.74 mm. These findings meant that the alloy became brittle.

Evaluation of the Structural Performance of Tetragonal Lattice Girders (사각 격자지보의 구조 성능 평가)

  • Kim, Seung-Jun;Han, Keum-Ho;Won, Deok-Hee;Baek, Jung-Sik;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.267-278
    • /
    • 2012
  • In general, the H-shaped steel ribs or triangular lattice girders have been mostly used in constructing tunnels through the NATM construction method. The H-shaped steel rib has higher flexural and axial strength than the triangular lattice girder, but many unexpected gaps can occur in the concrete lining system after shotcreting if the H-shaped steel rib is used as the support system. To achieve better shotcreting quality, the triangular lattice girder was developed. However, in general, the triangle lattice girder has low flexural and axial strength. Likewise, the triangular lattice girder, which has circular sectional members, has so many fractures from welded points at the joints between the members. Finally, the new type of tetragonal lattice girder was developed to overcome those problems. In this study, the structural performance of the tetragonal lattice girders was evaluated through analytical and experimental studies. In the analytical studies, the four-point bending analysis, the traditional evaluation method to determine the flexural strength of the lattice girder, was performed. Moreover, the linear-elastic analysis and stability analysis of the arch structure made by the lattice girders were performed to measure structural performance. Experiments were likewise performed to compare the structural performances of the tetragonal girder with traditional triangular lattice girders.

Densification and Mechanical Properties of Silicon Nitride Containing Lu2O3-SiO2 Additives (Lu2O3-SiO2계 소결조제를 포함하는 Silicon Nitride의 소결 특성 및 기계적 거동)

  • Lee, Sea-Hoon;Jo, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.384-389
    • /
    • 2011
  • Gas pressure sintering (GPS) of reaction bonded silicon nitride (RBSN) was performed using $Lu_2O_3-SiO_2$ additive and the properties were compared with those of specimens prepared using high purity $Si_3N_4$ powder. The relative density of RBSN and compacted $Si_3N_4$ powder were 68.9 and 47.1%, and total linear shrinkage after sintering at $1900^{\circ}C$ were 14.8 and 42.9%, respectively. High nitrogen partial pressure (5MPa) was required during sintering at $1900^{\circ}C$ in order to prevent the decomposition of the nitride and to promote the formation of SiC. The relative density and 4-point bending strength of RBSN and $Si_3N_4$ powder compact were 97.7%, 954MPa and 98.2%, 792MPa, respectively, after sintering at $1900^{\circ}C$. The sintered RBSN also showed high fracture toughness of 9.2MPam$^{1/2}$.

Shape Design and Performance Evaluation of FRP Box-type Stiffener For the Application of RC Structure (철근콘크리트용 FRP Box 휨 보강재의 형상 설계 및 거동 평가)

  • Kwon, Min-Ho;Jung, Woo-Young;Spacone, Enrico
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • This paper presents the design, fabrication and performance of a reinforced concrete beam strengthened by GFRP box plate and its possibility for structural rehabilitations. The load capacity, ductility and failure mode of reinforced concrete structures strengthened by FRP box plate were investigated and compared with traditional FRP plate strengthening method. This is intended to assess the feasibility of using FRP box plate for repair and strengthening of damaged RC beams. A series of four-point bending tests were conducted on RC beams with or without strengthening FRP systems the influence of concrete cover thickness on the performance of overall stiffness of the structure. The parameters obtained by the experimental studies were the stiffness, strength, crack width and pattern, failure mode, respectively. The test yielded complete load-deflection curves from which the increase in load capacity and the failure mode was evaluated.

Evaluation of Material Properties about CFRP Composite Adapted for Wind Power Blade by using DIC Method (풍력발전기 블레이드 적용 CFRP 복합재료의 DIC 방법에 의한 재료특성치 평가)

  • Kang, J.W.;Kwon, O.H.;Kim, T.K.;Cho, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-23
    • /
    • 2010
  • In recent, the capacity of a commercial wind power has reached the range of 6 MW, with large plants being built world-wide on land and offshore. The rotor blades and the nacelle are exposed to external loads. Wind power system concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. Plain woven fabrics Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness, strength and chemical stability. However, Plain woven CFRP composite have a lot of problems, especially delamination, compared with common materials. Therefore, the aim of this work is to estimate the mechanical properties using the tensile specimen and to evaluate strain using the CNF specimen on plain woven CFRP composites. For the strain, we tried to apply to plain woven CFRP using Digital Image Correlation (DIC) method and strain gauge. DIC method can evaluate a strain change so it can predict a location of fracture.

Strengthening of Borosilicate Glass by Ion Exchange for Lightweight Transparent Bulletproof Windows Materials (투명 방탄소재용 보로실리케이트 유리의 이온교환 강화)

  • Shim, Gyu-In;Eom, Hyengwoo;Choi, Se-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.507-513
    • /
    • 2013
  • Transparent bulletproof windows play an important role in the munitions industry. The thickness of bulletproof windows including soda-lime silicate(SLS) glass, polyvinyl butyral, poly urethane, main defense(200MD), and safety film was reduced from 40mm to 29mm by adjustment of SLS glass laminated array. Borosilicate glasses generally have lower surface density and more excellent mechanical properties than SLS glass. Borosilicate glass was strengthened by ion exchange in the $KNO_3$ powder. The maximum mechanical properties were observed at $550^{\circ}C$ for 10min. The Vickers hardness, fracture toughness and 3-point bending strength of ion exchanged samples were about $775kg/mm^2$, $1.91MPa{\cdot}m^{1/2}$ and 764MPa each, which are about 27%, 149% and 249% higher than parent borosilicate glass, respectively. The penetration depth of K+ ion at $550^{\circ}C$ for 10min was $59.8{\mu}m$. As a result, the transparent bulletproof windows were predicted to be more lightweight by ion exchange of borosilicate glass. If the SLS glass for bulletproof windows is replaced by ion exchanged borosilicate glass, the bulletproof windows can be expected to be lightweight and thinner.