• Title/Summary/Keyword: 4-chlorophenol

Search Result 94, Processing Time 0.022 seconds

Modification of Indophenol Reaction for Quantification of Reduction Activity of Nanoscale Zero Valent Iron (나노 영가철 환원 반응성의 정량 분석을 위한 수정된 인도페놀법 적용)

  • Hwang, Yuhoon;Lee, Wontae;Andersen, Henrik R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.667-675
    • /
    • 2016
  • Nanoscale zero-valent iron (nZVI) has been effectively applied for environmental remediation due to its ability to reduce various toxic compounds. However, quantification of nZVI reactivity has not yet been standardized. Here, we adapted colorimetric assays for determining reductive activity of nZVIs. A modified indophenol method was suggested to determine reducing activity of nZVI. The method was originally developed to determine aqueous ammonia concentration, but it was further modified to quantify phenol and aniline. The assay focused on analysis of reduction products rather than its mother compounds, which gave more accurate quantification of reductive activity. The suggested color assay showed superior selectivity toward reduction products, phenol or aniline, in the presence of mother compounds, 4-chlorophenol or nitrobenzene. Reaction conditions, such as reagent concentration and reaction time, were optimized to maximize sensitivity. Additionally, pretreatment step using $Na_2CO_3$ was suggested to eliminate the interference of residual iron ions. Monometallic nZVI and bimetallic Ni/Fe were investigated with the reaction. The substrates showed graduated reactivity, and thus, reduction potency and kinetics of different materials and reaction mechanism was distinguished. The colorimetric assay based on modified indophenol reaction can be promises to be a useful and simple tool in various nZVI related research topics.

Biological Treatment of Wastewater Containing Chlorinated Phenols by a Mixed Culture (복합미생물제재를 이용한 염소화 페놀계 폐수의 생물학적 처리)

  • 오희목;이완석;정상욱;박찬선;윤병대;김장억
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.115-121
    • /
    • 2001
  • Biological Treatment of Wastewater Containing Chlorinated Phenols by a Mixed Culture. Lee, Wan-Seok1, Sang-Wook Jung, Chan-Sun Park, Byung-Dae Yoon, Jang-Eok Kim\ and Hee-Mock Oh*. Environmental Bioresources Laboratory, Korea Research Institute of Biosicence and Biotechnology, Taejon, Korea, 1 Department of Agricultural Chemistry, Kyungpool< National University, Taegu, Korea - The biodegradation of chlorinated phenols in an artificial wastewater was investigated using a mixed culture. The mixed culture was composed of 8 microorganisms isolated from the soil contaminated with various chlorinated phenols. Pseudomonas sp. BM as a main constituent of a mixed culture was Gram-negative, catalase- and oxidase-positive, and rod-shaped, and did not grow at 41°C. It degraded 99% of initial 500 mg!1 of pentachlorophenol (PCP) in the minimal salts medium as a sole source of carbon and energy within 3 days. The degradation efficiency of Pseu.domon.as sp. BM was not affected by the other organic carbon and nitrogen compounds. Pseudomonas sp. BM was able to grow in a broad range of pH 5 - 8, and degrade 2,000 mg/1 PCP. In the experiment with an artificial wastewater containing chlorinated phenols, the degradation efficiency of the mixed culture was the range of 73% (2,4-dichlorophenol) -96% (2-chlorophenol) during an incubation of 7 days. In a continuous culture experiment, the degradation efficiency of mixed culture plus activated sludge was about 2 times higher than that of the control containing only activated sludge. These results indicate that it is possible to apply the mixed culture to other wastewaters containing chlorinated phenols. Key words: Biodegradation, chlorinated phenols, pentachlorophenol, Pseudomonas sp. BM

  • PDF

Aerobic Degradation of Tetrachloroethylene(PCE) by Pseudomonas stutzeri OX1

  • Ryoo, Doohyun;Shim, Hojae;Barbieri, Paola;Wood, Thomas K.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.207-208
    • /
    • 2000
  • Since trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) arise from anaerobic degradation of tetrachloroethylene (PCE) and TCE, there is interest in creating aerobic remediation systems that avoid the highly toxic VC and cis-DCE which predonominate in anaerobic degradation. However, it seemed TCE could not be degraded aerobically without an inducing compound (which also competitively inhibits TCE degradation). It has been shown that TCE induces expression of both the toluene dioxygenase of p. putida F1 as well as toluene-p-monooxygenase of P.mendocina KRI. We investigated here the ability of PCE, TCE, and chlorinated phenols to induce toluene-o-xylene monooxygenase (ToMO) from P.stutzeri OX1. ToMO has a relaxed regio-specificity since it hydroxylates toluene in the ortho, meta, and para positions; it also has a broad substrate range as it oxidizes o-xylene, m-xylene, p-xylene, toluene, benzene, ethylbenzene, styrene, and naphthalene; chlorinated compounds including TCE, 1, 1-DCE, cis-DCE, trans-DCE, VC, and chloroform : as well as mixtures of chlorinated aliphatics (Pseudomonas 1999 Maui Meeting). ToMO is a multicomponent enzyme with greatest similarity to the aromatic monooxygenases of Burkholderia pickettii PKO1 and P.mendocina KR1. Using P.sturzeri OX1, it was found that PCE induces P.mendocina KR1 Using P.situtzeri OX1, it was found that PCE induces ToMO activity measured as naphthalene oxygenase activity 2.5-fold, TCE induces 2.3-fold, and toluene induces 3.0 fold. With the mutant P.stutzeri M1 which does not express ToMO, it was also found there was no naphthalene oxygenate activity induced by PCE and TCE; hence, PCE and TCE induce the tow path. Using P.putida PaW340(pPP4062, pFP3028) which has the tow promoter fused to the reporter catechol-2, 3-dioxygenase and the regulator gene touR, it was determined that the tow promoter was induced 5.7-, 7.1-, and 5.2-fold for 2-, 3-, 4-chlorophenol, respectively (cf. 8.9-fold induction with o-cresol) : however, TCE and PCE did not directly induce the tou path. Gas chromatography and chloride ion analysis also showed that TCE induced ToMO expression in P.stutzeri OX1 and was degraded and mineralized. This is the first report of significant PCE induction of any enzyme as well as the first report of chlorinated compound induction of the tou operon. The results indicate TCE and chlorinated phenols can be degraded by P.stutzeri OX1 without a separate inducer of the tou pathway and without competitive inhibition.

  • PDF

Determination of Hydrolysis Rate Constants on Phosphamidon and Profenofos (Phosphamidon과 Profenofos의 가수분해속도 상수의 측정)

  • Min, Kyung-Jin;Ha, Young-Duck;Seo, Seol;Cha, Chun-Geun;Park, Jang-Woo;Lee, Seung-Gon
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.2
    • /
    • pp.144-150
    • /
    • 2000
  • The present study was peformed to determine the hydrolysis rate constants and degradation products of phosphamidon and proffnofos by the OECD method. Hydrolysis rate constants of phosphamidon in pH 4, pH 7, and pH 9 buffer solutions at 25 and 40$^{\circ}$C were 0.0020, 0.0022, 0.0049 and 0.0040, 0.0050, 0.0150, respectively. Hydrolysis rate of phosphamidon was accelerated by temprerature change under same pH conditions, and half-life of phosphamidon in pH 9 at 40。C was 3 times faster than that at 25。C. Hydrolysis rate of phosphamidon in alkaline solution(pH 9) was 2~4 times faster than that in acidic solution(pH 4) and neutral solution(pH 7) under same temperature. Hydrolysis rate constants of profenofos in pH 4, pH 7, and pH 9 buffer solutions at 25 and 40。C were 0.0022, 0.0047, 0.0860 and 0.0035, 0.0086, 0.1245, respectively. Hydrolysis rate of profenofos was accelerated by temprerature change under same pH conditions. Hydrolysis rate of profenofos in alkaline solution(pH 9) was 15~40 times faster than in acidic solution(pH 4) and neutral solution(pH 7) under same temperature condition, and half-life of profenofos was very fast within 8 hours. The hydrolysis rate of profenofos was faster than that of phosphamidon. In order to identify hydrolysis products, the extracts of degradation products were analyzed by GC/MS. The mass spectra of hydrolysis products of phosphamidon were at m/z 153 and 149, those of the profenofos were at m/z 208 and 240, respectively. The hydrolysis products of phosphamidon were O, O-dimethyl phosphate(DMP) and N, N-diethylchloroacetamide, and those of profenofos were 4-bromo-2-chlorophenol and O-ethyl-S-propyl phosphate.

  • PDF