• 제목/요약/키워드: 4-chlorobiphenyl degrading bacteria

검색결과 5건 처리시간 0.021초

Monitoring 4-Chlorobiphenyl-Degrading Bacteria in Soil Microcosms by Competitive Quantitative PCR

  • Lee, Soo-Youn;Song, Min-Sup;You, Kyung-Man;Kim, Bae-Hoon;Bang, Seong-Ho;Lee, In-Soo;Kim, Chi-Kyung;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • 제40권4호
    • /
    • pp.274-281
    • /
    • 2002
  • The competitive quantitative PCR method targeting pcbC gene was developed for monitoring 4-chlorobiphenyl(4CB)-degrading bacteria, Pseudomonas sp. strain DJ-12, in soil microcosms. The method involves extraction of DNA from soil contaminated with 4CB, PCR amplification of a pcbC gene fragment from the introduced strain with a set of strain-specific primers, and quantification of the elec-trophoresed PCR product by densitometry. To test the adequacy of the method, Pseudomonas sp. strain DJ-12 was introduced into both contaminated and non-contaminated soil microcosms amended with 4CB. Pseudomonas sp. strain DJ-12 was monitored and quantified by a competitive quantitative PCR in comparison with 4CB degradation and the result was compared to those obtained by using the conventional cultivation method. We successfully detected and monitored 4CB-degrading bacteria in each microcosm and found a significant linear relationship between the number of 4CB-degrading bacteria and the capacity for 4CB biodegradation. The results of DNA spiking and cell-spreading experiments suggest that this competitive quantitative PCR method targeting the pcbC gene for monitoring 4CB- degrading bacteria appears to be rapid, sensitive and more suitable than the microbiological approach in estimating the capacity of 4CB biodegradation in environmental samples.

염화 방향족 탄화수소 분해세균의 분리 및 특성 (Isolation and characterization of bacteria degrading chlorinated aromatic hydrocarbons)

  • 김종우;김치경;김영창;염재홍;이재구
    • 미생물학회지
    • /
    • 제25권2호
    • /
    • pp.122-128
    • /
    • 1987
  • 분해환경을 형성케하는 평판 고체배지 방법으로 4-CB 분해세균인 DJ-12, DJ-26, FP-6 균주와 2,4,5-T 분해세균인 TP-1균주를 공장폐수로부터 분리하여 각 균주의 분해능고 생화학적 특성을 연구하였다. 분리균주 중 DJ-12, DJ-26 그리고 TP-1은 Pseudomonas 속으로 동정되었다. Chlroinated aromatic hydrocarbon의 분해는 UV-scanning spectrum을 측정함으로써 조사하였는데 4-CB오 2,4,5-T의 peak는 각각 253nm와 292nm에서 나타났다. 각각의 기험 hydrocarbon을 첨가한 배양약에서 각 분해균주를 배양시킴에 따라 253nm와 292nm의 peak가 감소하는 것으로 이들 균주에 의한 시험 hydrocarbon의 분해능이 매우 높다는 것을 확인하였다. 각 시험균주로부터 plasmid DNA를 조사한 결과 모두 plasmid를 함유하고 있어 hydrocarbon 분해유전자가 plasmid에 존재할 수 있음을 알 수 있으며 이들 분해유전자의 유전적 특징을 규명하기 위한 curing test 나 transformation 과정에 필요한 marker를 찾아내기 위하여 몇가지 항생물질에 대한 저항성을 조사하였다.

  • PDF

Characterization of the pcbE Gene Encoding 2-Hydroxypenta-2,4-Dienoate Hydratase in Pseudomonas sp. DJ-12

  • Lim, Jong-Chul;Lee, Jeongrai;Jang, Jeong-Duk;Lim, Jai-Yun;Min, Kyung-Rak;Kim, Chi-Kyung;Kim, Young-Soo
    • Archives of Pharmacal Research
    • /
    • 제23권2호
    • /
    • pp.187-195
    • /
    • 2000
  • Nucleotide sequence extending 2,3-dihydroxybiphenyl 1,2-dioxygenase gene (pcbC) and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase gene (pcbD) of Pseudomonas sp. DJ-12 was previously analyzed and the two genes were present in the order of pcbD-pcbC preceded by a promoter from Pseudomonas sp. DJ-12. In this study, a 3.8-kb nucleotide sequence located downstream of the pcbC gene was analyzed to have three open reading frames (ORFs) that are designated as orf1, pcbE and orf2 genes. All of the ORFs were preceded by each ribosome-binding sequence of 5-GGAXA-3 (X=G or A). However, no promoter-like sequence and transcription terminator sequence were found in the analyzed region, downstream of pcbC gene. Therefore, the gene cluster appeared to be present in the order of pcbD-pcbC-orf1-pcbE-orf2 as an operon, which is unique organization characterized so far in biphenyl- and PCB-degrading bacteria. The orf1 gene was composed of 1,224 base pairs which can encode a polypeptide of molecular weight 44,950 containing 405 amino acid residues. A deduced amino acid sequence of the orf1 gene product exhibited 21-33% identity with those of indole dioxygenase and phenol hydroxylase components. The pcbE gene was composed of 783 base pairs encoding 2-hydroxypenta-2,4-dienoate hydratase involved in the 4-chlorobiphenyl catabolism. The orf2 gene was composed of 1,017 base pairs encoding a polypeptide of molecular weight 37,378 containing 338 amino acid residues. A deduced amino acid sequence of the orf2 gene product exhibited 31% identity with that of a nitrilotriacetate monooxygenase component.

  • PDF

유전공학적으로 변형시킨 4CB 분해세균 및 그 유전자 DNA에 대한 수계에서의 분자생태학적 안정성 (Molecular Ecological Stabilities of Genetically Modified 4CB-Degrading Bacteria and Their Gene DNAs in Water Environments)

  • Park, Sang-Ho;Myong-Ja Kwak;Ji-Young Kim;Chi-Kyung Kim
    • The Korean Journal of Ecology
    • /
    • 제18권1호
    • /
    • pp.109-120
    • /
    • 1995
  • As the genetically modified microorganisms (GMMs) and their recombinant plasmid DNAs could be released into natural environments, their stabilities and impacts to indigenous microorganisls have become very importhant research subjects concerning with environmental and ecological aspects. In this study, the genetically modified E. coli CU103 and its recombinant pCU103 plasmid DNA, in which pcbCD genes involving in degradation of biphenyl and 4-chlorobiphenyl were cloned, were studied for their survival and stability in several different waters established under laboratory conditions. E. coli CU103 and its host E. coli XL1-Blue survived longer in sterile distilled water (SDW) and filtered autoclaved river water (FAW) than in filtered river water (FW). A lot of extracellular DNAs were released from E. coli CU103 by lytic action of phages in FW and the released DNAs were degraded by DNase dissolved in the water. Such effects of the factors in FW on stability of the recombinant pCU103 plasmid were also observed in the results of gel electrophoresis, quantitative analysis with bisbenzimide, and transformation assay. Therefore, the recombinant plasmids of pCU103 were found to be readily liberated from the genetically modified E. coli CU103 into waters by normal metabolic processes and lysis of cells. And the plasmid DNAs were quite stable in waters, but their stabilities could be affected by physicoKDICical and biological factors in non-sterile natural waters.

  • PDF