• Title/Summary/Keyword: 4-Type Wheel Steering

Search Result 27, Processing Time 0.024 seconds

Study on Concurrent Simulation Technique of Matlab CMDPS and A CarSim Base Full Car Model (매트랩 CMDPS와 카심 기반 완전차량모델의 동시시뮬레이션 기술에 관한 연구)

  • Jang, Bongchoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1555-1560
    • /
    • 2013
  • The Column type Motor Driven Power Steering(CMDPS) systems are generally equipped among passenger vehicles ensuring better vehicle safety and fuel economy. In general to analyze systems and to develop a controller a full vehicle model from CarSim developed by Mechanical Simulation Incorporation interacting with MDPS control algorithm from Matlab Simulink was concurrently simulated. This paper describes the development of concurrent simulation technique in detail for analyzing Matlab Simulink MDPS control system with a dynamic vehicle system because the specific method has not been revealed in detail. The steering wheel angle input was evaluated and well compared with proving ground experimental data. The comparisons from concurrent simulation show an effective way to develop and validate the control algorithm. This concurrent simulation capability will be efficiently used for CMDPS performance evaluation and logic tuning as well as for vehicle handling performance.

Development of a Prototype of Guidance System for Rice-transplanter

  • Zhang, Fang-Ming;Shin, Beom-Soo;Feng, Xi-Ming;Li, Yuan;Shou, Ru-Jiang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.255-263
    • /
    • 2013
  • Purpose: It is not easy to drive a rice-transplanter avoiding underlapped or overlapped transplanting in paddy fields. An automated guidance system for the riding-type rice-transplanter would be necessary to operate the rice-transplanter autonomously or to assist the beginning drivers as a driving aid. Methods: A prototype of guidance system was composed of embedded computers, RTK-GPS, and a power-steering mechanism. Two Kalman filters were adopted to overcome sparse positioning data (1 Hz) from the RTK-GPS. A global Kalman filter estimated the posture of rice-transplanter every one second, and a local Kalman filter calculated the posture from every new estimation of the global Kalman filter with an interval of 200 ms. A PID controller was applied to the row-following mode control. A control method of U-turning mode was developed as well. A stepping motor with a reduction gear set was used to rotate the shaft of steering wheel. Results: Test trials for U-turning and row-following modes were done in a paddy field after some parameters have been tuned at the ground speed range of 0.3 ~ 1.2 m/s. The minimum RMS error of offset was 3.13 cm at the ground speed of 0.3 m/s while the maximum RMS error was 13.01 cm at 1.2 m/s. The offset RMS error tended to increase as the ground speed increased. The target point distance, LT also affected the system performance and PID controller parameters should be adjusted on different ground speeds. Conclusions: A target angle-based PID controller plus stationary steering angle controller made it possible for the rice-transplanter to steer autonomously by following a reference line accurately and even on U-turning mode. However, as condition in paddy fields is very complicated, the system should control the ground speed that prevents it from deviating too much due to ditch and slope.

Development of Path Tracking Algorithm and Variable Look Ahead Distance Algorithm to Improve the Path-Following Performance of Autonomous Tracked Platform for Agriculture (농업용 무한궤도형 자율주행 플랫폼의 경로 추종 및 추종 성능 향상을 위한 가변형 전방 주시거리 알고리즘 개발)

  • Lee, Kyuho;Kim, Bongsang;Choi, Hyohyuk;Moon, Heechang
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.142-151
    • /
    • 2022
  • With the advent of the 4th industrial revolution, autonomous driving technology is being commercialized in various industries. However, research on autonomous driving so far has focused on platforms with wheel-type platform. Research on a tracked platform is at a relatively inadequate step. Since the tracked platform has a different driving and steering method from the wheel-type platform, the existing research cannot be applied as it is. Therefore, a path-tracking algorithm suitable for a tracked platform is required. In this paper, we studied a path-tracking algorithm for a tracked platform based on a GPS sensor. The existing Pure Pursuit algorithm was applied in consideration of the characteristics of the tracked platform. And to compensate for "Cutting Corner", which is a disadvantage of the existing Pure Pursuit algorithm, an algorithm that changes the LAD according to the curvature of the path was developed. In the existing pure pursuit algorithm that used a tracked platform to drive a path including a right-angle turn, the RMS path error in the straight section was 0.1034 m and the RMS error in the turning section was measured to be 0.2787 m. On the other hand, in the variable LAD algorithm, the RMS path error in the straight section was 0.0987 m, and the RMS path error in the turning section was measured to be 0.1396 m. In the turning section, the RMS path error was reduced by 48.8971%. The validity of the algorithm was verified by measuring the path error by tracking the path using a tracked robot platform.

Development of the Multi-stage System with 4 DOF (4자유도 모션이 가능한 복합 무대 시스템 개발)

  • Lee, Sang-Won;Won, Daehee;Lee, Sulhee
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.5
    • /
    • pp.18-26
    • /
    • 2015
  • In this paper, we presented a design and control method of multi-stage with wagon and lift stage. Multi-stage system has 4 degree-of-freedom(DOF), i.e., forward/backward/left/right/rotate and up/down motion. Wagon mechanism in the type of two wheel and steering is proposed in order to improve for the maneuverability compared to the existing differential-type wagons. Also, the lift mechanism is designed by interlocking type in order to make the maximum height bigger than 10 times of the original height. We also proposed a path planning algorithm. The performance of the propped system is validated via multi motion experiments, so that the multi-stage system is useful for various performances production.

Development of a Computer Model for the Turning Maneuver Analysis of a Heavy Truck (대형 트럭의 선회 주행특성 해석을 위한 컴퓨터 모델의 개발)

  • 문일동;권혁조;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.121-129
    • /
    • 2000
  • this paper develops a computational model for the turning maneuver analysis of a cabover type heavy truck. The model having 42 degree-of-freedom is developed using ADAMS. Leaf springs used in the front and rear suspension systems are modeled by dividing it three links and joining them with joints. Force and displacement relationship showing nonlinear hysteric characteristics of the leaf spring is measured and modeled with an exponential function. A velocity and force relationship of a shock absorber is measured and modeled with a spline function. And a stabilizer bar is modeled using ADAMS beam element to consider a twisting and bending effect. To verify the developed model an actual vehicle test is performed in the double lane change course with 50kph and 60kph vehicle velocity. In the actual vehicle test lateral acceleration roll angle and yaw rate are measured, The tendency and peak-to-peak values of the actual vehicle test and simultion results are compared each other.

  • PDF

Effects of a Hand-Free Cellular Phone Use on Driver's Mental Workload and Performance in an Urban Area (도시부 핸드프리 휴대폰 사용이 운전자 부하 및 수행도에 미치는 영향 연구)

  • Cha, Doo-Wonn;Tsuyoshi, Katayama;Nobuyuki, Uchida;Park, Peom
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.31-39
    • /
    • 2000
  • Cellular Phone use while driving is one of the critical causes of traffic accident by falling the driver into the improper lookout and inattention situations by disturbing the driving behaviors and by increasing the driver's mental workloads. These days, therefore, governments in many countries are trying to Prohibit the cellular Phone use while driving by the law focused on the hand-held type of cellular phone. This Paper investigated the impacts on the hands-free cellular Phone use while driving to the drivers Performance among normal and two different level of secondary task driving conditions in the urban of Japan. As the results, quantitative differences of drivers eye movement, subjective mental workload, steering wheel angle entropy, and cognitive Performance of secondary tasks were compared between straight and curve (right turn) section for each driving condition.

  • PDF

A Study on Implementation of Service Robot Platform for Mess-Cleanup (정리정돈용 서비스 로봇 플랫폼의 구현 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.487-495
    • /
    • 2012
  • In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 4 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.